Advertisement

Journal of Meteorological Research

, Volume 32, Issue 2, pp 219–232 | Cite as

Diurnal and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake

  • Yichen Yang
  • Yongwei Wang
  • Zhen Zhang
  • Wei Wang
  • Xia Ren
  • Yaqi Gao
  • Shoudong Liu
  • Xuhui Lee
Regular Articles
  • 117 Downloads

Abstract

Among several influential factors, the geographical position and depth of a lake determine its thermal structure. In temperate zones, shallow lakes show significant differences in thermal stratification compared to deep lakes. Here, the variation in thermal stratification in Lake Taihu, a shallow fresh water lake, is studied systematically. Lake Taihu is a warm polymictic lake whose thermal stratification varies in short cycles of one day to a few days. The thermal stratification in Lake Taihu has shallow depths in the upper region and a large amplitude in the temperature gradient, the maximum of which exceeds 5°C m–1. The water temperature in the entire layer changes in a relatively consistent manner. Therefore, compared to a deep lake at similar latitude, the thermal stratification in Lake Taihu exhibits small seasonal differences, but the wide variation in the short term becomes important. Shallow polymictic lakes share the characteristic of diurnal mixing. Prominent differences on the duration and frequency of long-lasting thermal stratification are found in these lakes, which may result from the differences of local climate, lake depth, and fetch. A prominent response of thermal stratification to weather conditions is found, being controlled by the stratifying effect of solar radiation and the mixing effect of wind disturbance. Other than the diurnal stratification and convection, the representative responses of thermal stratification to these two factors with contrary effects are also discussed. When solar radiation increases, stronger wind is required to prevent the lake from becoming stratified. A daily average wind speed greater than 6 m s–1 can maintain the mixed state in Lake Taihu. Moreover, wind-induced convection is detected during thermal stratification. Due to lack of solar radiation, convection occurs more easily in nighttime than in daytime. Convection occurs frequently in fall and winter, whereas long-lasting and stable stratification causes less convection in summer.

Key words

Lake Taihu thermal stratification solar radiation wind speed convection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

I would like to express my heartfelt thanks to all those who have helped me in this research.

References

  1. Berger, S. A., S. Diehl, H. Stibor, et al., 2007: Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia, 150, 643–654, doi: 10.1007/s00442-006-0550-9.CrossRefGoogle Scholar
  2. Boehrer, B., and M. Schultze, 2008: Stratification of lakes. Rev. Geophys., 46, RG2005, doi: 10.1029/2006RG000210.CrossRefGoogle Scholar
  3. Chai, A., and E. Kit, 1991: Experiments on entrainment in an annulus with and without velocity gradient across the density interface. Exp. Fluids, 11, 45–57, doi: 10.1007/BF00198431.CrossRefGoogle Scholar
  4. Cheng, X., Y. W. Wang, C. Hu, et al., 2016: The lake–air exchange simulation of a lake model over eastern Taihu Lake based on the E–ε turbulent kinetic energy closure thermodynamic process. Acta Meteor. Sinica, 74, 633–645, doi: 10.11676/qxxb2016.043. (in Chinese)CrossRefGoogle Scholar
  5. Chu, C. R., and C. K. Soong, 1997: Numerical simulation of windinduced entrainment in a stably stratified water basin. J. Hydraul. Res., 35, 21–42, doi: 10.1080/00221689709498642.CrossRefGoogle Scholar
  6. Chu, P. C., and C. W. Fan, 2011: Maximum angle method for determining mixed layer depth from seaglider data. J. Oceanogr., 67, 219–230, doi: 10.1007/s10872-011-0019-2.CrossRefGoogle Scholar
  7. Churchill, J. H., and W. C. Kerfoot, 2007: The impact of surface heat flux and wind on thermal stratification in Portage Lake, Michigan. J. Great Lakes Res., 33, 143–155, doi: 10.3394/0380-1330(2007)33[143:TIOSHF]2.0.CO;2.CrossRefGoogle Scholar
  8. Condie, S. A., and I. T. Webster, 2002: Stratification and circulation in a shallow turbid waterbody. Environ. Fluid Mech., 2, 177–196, doi: 10.1023/A:1019898931829.CrossRefGoogle Scholar
  9. Crawford, G. B., and R. W. Collier, 1997: Observations of a deepmixing event in Crater Lake, Oregon. Limnol. Oceanogr., 42, 299–306, doi: 10.4319/lo.1997.42.2.0299.CrossRefGoogle Scholar
  10. Deng, B., S. D. Liu, W. Xiao, et al., 2013: Evaluation of the CLM4 Lake Model at a large and shallow freshwater lake. J. Hydrometeorol., 14, 636–649, doi: 10.1175/JHM-D-12-067.1.CrossRefGoogle Scholar
  11. Farrow, D. E., and C. L. Stevens, 2003: Numerical modelling of a surface-stress driven density-stratified fluid. J. Eng. Math., 47, 1–16, doi: 10.1023/A:1025519724504.CrossRefGoogle Scholar
  12. Fee, E. J., R. E. Hecky, S. E. M. Kasian, et al., 1996: Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield Lakes. Limnol. Oceanogr., 41, 912–920, doi: 10.4319/lo.1996.41.5.0912.CrossRefGoogle Scholar
  13. Fonseca, B. M., and C. E. de M. Bicudo, 2008: Phytoplankton seasonal variation in a shallow stratified eutrophic reservoir (Garças Pond, Brazil). Hydrobiologia, 600, 267–282, doi: 10.1007/s10750-007-9240-9.CrossRefGoogle Scholar
  14. Giles, C. D., P. D. F. Isles, T. Manley, et al., 2016: The mobility of phosphorus, iron, and manganese through the sediment-water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions. Biogeochemistry, 127, 15–34, doi: 10.1007/s10533-015-0144-x.CrossRefGoogle Scholar
  15. Godo, T., K. Kato, H. Kamiya, et al., 2001: Observation of windinduced two-layer dynamics in Lake Nakaumi, a coastal lagoon in Japan. Limnology, 2, 137–143, doi: 10.1007/s102010170009.CrossRefGoogle Scholar
  16. Gonçalves, M. A., F. C. Garcia, and G. F. Barroso, 2016: Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil). An. Acad. Bras. Cienc., 88, 1341–1356, doi: 10.1590/0001-3765201620150788.CrossRefGoogle Scholar
  17. Heo, K.-Y., and K.-J. Ha, 2010: A coupled model study on the formation and dissipation of sea fogs. Mon. Wea. Rev., 138, 1186–1205, doi: 10.1175/2009MWR3100.1.CrossRefGoogle Scholar
  18. Hu, W. P., S. E. Jørgensen, Z. Fabing, et al., 2011: A model on the carbon cycling in Lake Taihu, China. Ecol. Model., 222, 2973–2991, doi: 10.1016/j.ecolmodel.2011.04.018.CrossRefGoogle Scholar
  19. Kalff, J., 2002: Temperature cycles, lake stratification, and heat budgets. Limnology: Inland Water Ecosystems, J. Kalff, Ed. Prentice Hall, Upper Saddle River, N. J., 592 pp.Google Scholar
  20. Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, doi: 10.1029/2000JC900072.Google Scholar
  21. Lee, X. H., S. D. Liu, W. Xiao, et al., 2014: The Taihu Eddy Flux Network: An observational program on energy, water, and greenhouse gas fluxes of a large freshwater lake. Bull. Amer. Meteor. Soc., 95, 1583–1594, doi: 10.1175/BAMS-D-13-00136.1.CrossRefGoogle Scholar
  22. Lewis, W. M., Jr., 1983: A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci., 40, 1779–1787, doi: 10.1139/f83-207.CrossRefGoogle Scholar
  23. Liu, H. Z., J. W. Feng, J. H. Sun, et al., 2015: Eddy covariance measurements of water vapor and CO2 fluxes above the Erhai Lake. Sci. China Earth Sci., 58, 317–328, doi: 10.1007/s11430-014-4828-1.CrossRefGoogle Scholar
  24. Michalski, J., and U. Lemmin, 1995: Dynamics of vertical mixing in the hypolimnion of a deep lake: Lake Geneva. Limnol. Oceanogr., 40, 809–816, doi: 10.4319/lo.1995.40.4.0809.CrossRefGoogle Scholar
  25. Monterey, G., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, Washington, D.C., U.S. Government Printing Office, 96 pp.Google Scholar
  26. Oswald, C. J., and W. R. Rouse, 2004: Thermal characteristics and energy balance of various-size Canadian shield lakes in the Mackenzie River Basin. J. Hydrometeorol., 5, 129–144, doi: 10.1175/1525-7541(2004)005<0129:TCAEBO>2.0.CO;2.CrossRefGoogle Scholar
  27. Pernica, P., M. G. Wells, and S. MacIntyre, 2014: Persistent weak thermal stratification inhibits mixing in the epilimnion of north-temperate Lake Opeongo, Canada. Aquat. Sci., 76, 187–201, doi: 10.1007/s00027-013-0328-1.CrossRefGoogle Scholar
  28. Qin, B. Q., P. Z. Xu, Q. L. Wu, et al., 2007: Environmental issues of Lake Taihu, China. Hydrobiologia, 581, 3–14, doi: 10.1007/s10750-006-0521-5.CrossRefGoogle Scholar
  29. Qiu, Y. Y., 2013: Numerical simulation study of the effect of underlying surface obstacles on observation environment. Master Degree dissertation, Nanjing University of Information Science & Technology, China, 53 pp. (in Chinese)Google Scholar
  30. Samal, N. R., K. D. Jöhnk, F. Peeters, et al., 2008: Mixing and internal waves in a small stratified Indian lake: Subhas Sarobar. Monitoring and Modelling Lakes and Coastal Environments. P. K. Mohanty, Ed., Springer Publishing, Berlin, 91–100.CrossRefGoogle Scholar
  31. Schadlow, S. G., and D. P. Hamilton, 1995: Effect of major flow diversion on sediment nutrient release in a stratified reservoir. Mar. Freshwater Res., 46, 189–195, doi: 10.1071/MF9950189.Google Scholar
  32. Socolofsky, S. A., and G. H. Jirka, 2005: Mixing in lakes and reservoirs. Special Topics in Mixing and Transport Processes in the Environment. S. A. Socolofsky, and G. H. Jirka, Eds., College Station, TX, Texas A&M University, 230 pp.Google Scholar
  33. Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 7305–7316, doi: 10.1029/92JC00407.CrossRefGoogle Scholar
  34. Sun, S. F., J. F. Yan, N. Xia, et al., 2007: Development of a model for water and heat exchange between the atmosphere and a water body. Adv. Atmos. Sci., 24, 927–938, doi: 10.1007/s00376-007-0927-7.CrossRefGoogle Scholar
  35. Tuan, N. V., K. Hamagami, K. Mori, et al., 2009: Mixing by windinduced flow and thermal convection in a small, shallow and stratified lake. Paddy Water Environ., 7, 83–93, doi: 10.1007/s10333-009-0158-x. vonCrossRefGoogle Scholar
  36. Einem, J., and W. Granéli, 2010: Effects of fetch and dissolved organic carbon on epilimnion depth and light climate in small forest lakes in southern Sweden. Limnol. Oceanogr., 55, 920–930, doi: 10.4319/lo.2010.55.2.0920.CrossRefGoogle Scholar
  37. Wang, M. D., J. Z. Hou, and Y. B. Lei, 2014: Classification of Tibetan Lakes based on variations in seasonal lake water temperature. Chinese Sci. Bull., 59, 4847–4855, doi: 10.1007/s11434-014-0588-8.CrossRefGoogle Scholar
  38. Wang, S., X. Qian, B. P. Han, et al., 2012: Effects of local climate and hydrological conditions on the thermal regime of a reservoir at tropic of cancer, in southern China. Water Res., 46, 2591–2604, doi: 10.1016/j.watres.2012.02.014.CrossRefGoogle Scholar
  39. Wang, W., 2014: Energy budget at Lake Taihu and its response to climate change. Ph.D. dissertation, Nanjing University of Information Science & Technology, China, 140 pp. (in Chinese)Google Scholar
  40. Wilhelm, S., and R. Adrian, 2008: Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol., 53, 226–237, doi: 10.1111/j.1365-2427.2007.01887.x.CrossRefGoogle Scholar
  41. Zhang, L., B. Zhu, J. H. Gao, et al., 2017: Impact of Taihu Lake on city ozone in the Yangtze River Delta. Adv. Atmos. Sci., 34, 226–234, doi: 10.1007/s00376-016-6099-6.CrossRefGoogle Scholar
  42. Zhang, Y. L., Z. X. Wu, M. L. Liu, et al., 2014: Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China. Limnol. Oceanogr., 59, 1193–1202, doi: 10.4319/lo.2014.59.4.1193.CrossRefGoogle Scholar
  43. Zhao, L. L., G. W. Zhu, Y. F. Chen, et al., 2011: Thermal stratification and its influence factors in a large-sized and shallow lake Taihu. Adv. Water Sci., 22, 844–850. (in Chinese)CrossRefGoogle Scholar
  44. Zhao, Q. H., J. H. Sun, and G. W. Zhu, 2012: Simulation and exploration of the mechanisms underlying the spatiotemporal distribution of surface mixed layer depth in a large shallow lake. Adv. Atmos. Sci., 29, 1360–1373, doi: 10.1007/s00376-012-1262-1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yichen Yang
    • 1
    • 2
  • Yongwei Wang
    • 1
    • 3
  • Zhen Zhang
    • 1
    • 4
  • Wei Wang
    • 1
    • 4
  • Xia Ren
    • 1
    • 3
  • Yaqi Gao
    • 1
    • 3
  • Shoudong Liu
    • 1
    • 4
  • Xuhui Lee
    • 1
    • 5
  1. 1.Yale–NUIST Center on Atmospheric EnvironmentNanjing University of Information Science & TechnologyNanjingChina
  2. 2.School of Environmental Science and EngineeringNanjing University of Information Science & TechnologyNanjingChina
  3. 3.School of Atmospheric PhysicsNanjing University of Information Science & TechnologyNanjingChina
  4. 4.School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
  5. 5.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA

Personalised recommendations