Advertisement

Journal of Meteorological Research

, Volume 32, Issue 1, pp 38–48 | Cite as

Aerosol Hygroscopicity during the Haze Red-Alert Period in December 2016 at a Rural Site of the North China Plain

  • Xuefei Qi
  • Junying Sun
  • Lu Zhang
  • Xiaojing Shen
  • Xiaoye Zhang
  • Yangmei Zhang
  • Yaqiang Wang
  • Haochi Che
  • Zhouxiang Zhang
  • Junting Zhong
  • Kaiyan Tan
  • Huarong Zhao
  • Sanxue Ren
Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Beijing-Tianjin-Hebei Area of China
  • 47 Downloads

Abstract

A humidification system was deployed to measure aerosol hygroscopicity at a rural site of the North China Plain during the haze red-alert period 17–22 December 2016. The aerosol scattering coefficients under dry [relative humidity (RH) < 30%] and wet (RH in the range of 40%–85%) conditions were simultaneously measured at wavelengths of 450, 550, and 700 nm. It is found that the aerosol scattering coefficient and backscattering coefficient increased by only 29% and 10%, respectively when RH went up from 40% to 80%, while the hemispheric backscatter fraction went down by 14%, implying that the aerosol hygroscopicity represented by the aerosol scattering enhancement factor f(RH) is relatively low and RH exerted little effects on the aerosol light scattering in this case. The scattering enhancement factors do not show significant differences at the three wavelengths, only with an approximate 2% variation, suggesting that the aerosol hygroscopicity is independent of the wavelength. Aerosol hygroscopicity is highly dependent on the aerosol chemical composition. When there is a large mass fraction of inorganics and a small mass fraction of organic matter, f(RH) reaches a high value. The fraction of NO3 was strongly correlated with the aerosol scattering coefficient at RH = 80%, which suggests that NO3 played an important role in aerosol hygroscopic growth during the heavy pollution period.

Keywords

aerosol hygroscopicity scattering enhancement factor chemical composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was also supported by the China Meteorological Administration Innovation Team for Haze–fog Observation and Forecasts.

References

  1. Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, et al., 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 1014–1017, doi: 10.1038/nature03174.CrossRefGoogle Scholar
  2. Carrico, C. M., M. J. Rood, and J. A. Ogren, 1998: Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res., 103, 16565–16574, doi: 10.1029/98JD00685.CrossRefGoogle Scholar
  3. Cheng, Y. F., A. Wiedensohler, H. Eichler, et al., 2008: Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study. Atmos. Environ., 42, 6373–6397, doi: 10.1016/j.atmosenv.2008.04.009.CrossRefGoogle Scholar
  4. Cruz, C. N., and S. N. Pandis, 2016: Deliquescence and hygroscopic growth of mixed inorganic–organic atmospheric aerosol. Environ. Sci. Technol., 34, 4313–4319, doi: 10.1021/es9907109.CrossRefGoogle Scholar
  5. Day, D. E., and W. C. Malm, 2001: Aerosol light scattering measurements as a function of relative humidity: A comparison between measurements made at three different sites. Atmos. Environ., 35, 5169–5176, doi: 10.1016/s1352-2310(01)00320-X.CrossRefGoogle Scholar
  6. Fierz-Schmidhauser, R., P. Zieger, M. Gysel, et al., 2009: Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch. Atmos. Chem. Phys., 10, 2319–2333, doi: 10.5194/acp-10-2319-2010.CrossRefGoogle Scholar
  7. Fierz-Schmidhauser, R., P. Zieger, A. Vaishya, et al., 2010: Light scattering enhancement factors in the marine boundary layer (Mace Head, Ireland). J. Geophys. Res., 115, D20204, doi: 10.1029/2009JD013755.CrossRefGoogle Scholar
  8. Hudson, J. G., and A. D. Clarke, 1992: Aerosol and cloud condensation nuclei measurements in the Kuwait plume. J. Geophys. Res., 97, 14533–14536, doi: 10.1029/92jd00800.CrossRefGoogle Scholar
  9. Kasten, F., 1969: Visibility forecast in the phase of pre-condensation. Tellus, 21, 631–635, doi: 10.1111/j.2153-3490.1969.tb00469.x.CrossRefGoogle Scholar
  10. Kotchenruther, R. A., and P. V. Hobbs, 1998: Humidification factors of aerosols from biomass burning in Brazil. J. Geophys. Res., 103, 32081–32089, doi: 10.1029/98jd00340.CrossRefGoogle Scholar
  11. Kotchenruther, R. A., P. V. Hobbs, and D. A. Hegg, 1999: Humidification factors for atmospheric aerosols off the mid-Atlantic coast of the United States. J. Geophys. Res., 104, 2239–2251, doi: 10.1029/98jd01751.CrossRefGoogle Scholar
  12. Kuang, Y., C. S. Zhao, J. C. Tao, et al., 2015: Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect. Atmos. Chem. Phys., 15, 339–369, doi: 10.5194/acp-15-5761-2015.CrossRefGoogle Scholar
  13. Kuang, Y., C. S. Zhao, J. C. Tao, et al., 2016a: Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on the North China Plain. Atmos. Environ., 147, 224–233, doi: 10.1016/j.atmosenv.2016.10.013.CrossRefGoogle Scholar
  14. Kuang, Y., C. S. Zhao, N. Ma, et al., 2016b: Deliquescent phenomena of ambient aerosols on the North China Plain. Geophys. Res. Lett., 43, 8744–8750, doi: 10.1002/2016gl070273.CrossRefGoogle Scholar
  15. Li, W. J., J. X. Sun, L. Xu, et al., 2016: A conceptual framework for mixing structures in individual aerosol particles. J. Geophys. Res., 121, 13784–13798, doi: 10.1002/2016jd025252.Google Scholar
  16. Liu, X. G., and Y. H. Zhang, 2009: Research on the measurement of aerosol hygroscopic growth factor in Guangzhou city. China Environ. Sci., 29, 1128–1133, doi: 10.3321/j.issn:1000-6923.2009.11.002. (in Chinese)Google Scholar
  17. Liu, X. G., and Y. H. Zhang, 2010: Advances in research on aerosol hygroscopic properties at home and abroad. Climatic Environ. Res., 15, 808–816, doi: 10.3878/j.issn.1006-9585.201006.10. (in Chinese)Google Scholar
  18. Pan, X. L., P. Yan, J. Tang, et al., 2009: Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city. Atmos. Chem. Phys., 9, 7519–7530, doi: 10.5194/acp-9-7519-2009.CrossRefGoogle Scholar
  19. Seinfeld, J. H., and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley Press, 1326 pp.Google Scholar
  20. Shen, X. J., 2012: Characteristics of the particle number size distribution and optical properties at Mt. Tai. Ph.D. Dissertation, Chinese Academy of Meteorological Sciences, China, 130 pp. (in Chinese)Google Scholar
  21. Shen, X. J., J. Y. Sun, Y. M. Zhang, et al., 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmos. Chem. Phys., 11, 1565–1580, doi: 10.5194/acp-11-1565-2011.CrossRefGoogle Scholar
  22. Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2018: Comparison of submicron particles at a rural and an urban site in the North China Plain during the December 2016 heavy pollution episodes. J. Meteor. Res., 32, 26–37, doi: 10.1007/s13351-018-7060-7.CrossRefGoogle Scholar
  23. Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four years of continuous surface aerosol measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res., 106, 20735–20747, doi: 10.1029/2001JD000785.CrossRefGoogle Scholar
  24. Stock, M., Y. F. Cheng, W. Birmili, et al., 2011: Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions. Atmos. Chem. Phys., 11, 4251–4271, doi: 10.5194/acp-11-4251-2011.CrossRefGoogle Scholar
  25. Sun, J. Y., L. Zhang, X. J. Shen, et al., 2016: A review of the ef-fects of relative humidity on aerosol scattering properties. Acta Meteor. Sinica, 74, 672–682, doi: 10.11676/qxxb2016.059. (in Chinese)Google Scholar
  26. Tian, L., W. Zhang, J. S. Shi, et al., 2010: A preliminary study on scattering property of dust aerosol in Hexi Corridor. Plateau Meteor., 29, 1050–1057. (in Chinese)Google Scholar
  27. Tuch, T. M., A. Haudek, T. Müller, et al., 2009: Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites. Atmos. Meas. Tech., 2, 417–422, doi: 10.5194/amt-2-417-2009.CrossRefGoogle Scholar
  28. Yan, P., X. L. Pan, J. Tang, et al., 2008: An experimental study on the influence of relative humidity on the atmospheric aerosol scattering coefficient at an urban site in Beijing. Acta Meteor. Sinica, 66, 111–119, doi: 10.3321/j.issn:0577-6619.2008.01.011. (in Chinese)Google Scholar
  29. Yan, P., X. L. Pan, J. Tang, et al., 2009: Hygroscopic growth of aerosol scattering coefficient: A comparative analysis between urban and suburban sites at winter in Beijing. Particuology, 7, 52–60, doi: 10.1016/j.partic.2008.11.009.CrossRefGoogle Scholar
  30. Yang, Y. R., X. G. Liu, Y. Qu, et al., 2015: Characteristics and formation mechanism of continuous hazes in China: A case study during the autumn of 2014 in the North China Plain. Atmos. Chem. Phys., 15, 8165–8178, doi: 10.5194/acp-15-8165-2015.CrossRefGoogle Scholar
  31. Zhang, L., 2017: Observation and model study of relative humidity effects on aerosol light scattering at a regional background site in the Yangtze Delta Region. Ph.D. Dissertation, Chinese Academy of Meteorological Sciences, China, 81 pp. (in Chinese)Google Scholar
  32. Zhang, L., J. Y. Sun, X. J. Shen, et al., 2015: Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China. Atmos. Chem. Phys., 15, 8439–8454, doi: 10.5194/acp-15-8439-2015.CrossRefGoogle Scholar
  33. Zhang, Y. M., J. Y. Sun, X. Y. Zhang, et al., 2013: Seasonal characterization of components and size distributions for submicron aerosols in Beijing. Sci. China Earth Sci., 56, 890–900, doi: 10.1007/s11430-012-4515-z.CrossRefGoogle Scholar
  34. Zieger, P., R. Fierz-Schmidhauser, M. Gysel, et al., 2010: Effects of relative humidity on aerosol light scattering in the Arctic. Atmos. Chem. Phys., 10, 3875–3890, doi: 10.5194/acp-10-3875-2010.CrossRefGoogle Scholar
  35. Zieger, P., R. Fierz-Schmidhauser, L. Poulain, et al., 2014: Influence of water uptake on the aerosol particle light scattering coefficients of the central European aerosol. Tellus, 66, 22716, doi: 10.3402/tellusb.v66.22716.CrossRefGoogle Scholar
  36. Zieger, P., P. P. Aalto, V. Aaltonen, et al., 2015: Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study. Atmos. Chem. Phys., 15, 7247–7267, doi: 10.5194/acp-15-7247-2015.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuefei Qi
    • 1
  • Junying Sun
    • 1
  • Lu Zhang
    • 1
  • Xiaojing Shen
    • 1
  • Xiaoye Zhang
    • 1
  • Yangmei Zhang
    • 1
  • Yaqiang Wang
    • 1
  • Haochi Che
    • 1
  • Zhouxiang Zhang
    • 1
  • Junting Zhong
    • 1
  • Kaiyan Tan
    • 2
  • Huarong Zhao
    • 2
  • Sanxue Ren
    • 2
  1. 1.State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Integrated Ecological–Meteorological Observation and Experimental StationChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations