Journal of Meteorological Research

, Volume 32, Issue 2, pp 279–287 | Cite as

Impact of Tropospheric Ozone on Summer Climate in China

  • Shu Li
  • Tijian Wang
  • Prodromos Zanis
  • Dimitris Melas
  • Bingliang Zhuang
Special Collection on Aerosol-Cloud-Radiation Interactions


The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m–2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day–1 over eastern China during summer. In addition, tropospheric ozone increased the land–sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.

Key words

tropospheric ozone China East Asian summer monsoon radiative forcing climatic effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann, M., Z. Klimont, and F. Wagner, 2013: Regional and global emissions of air pollutants: Recent trends and future scenarios. Annu. Rev. Environ. Resour., 38, 31–55, doi: 10.1146/annurev-environ-052912-173303.CrossRefGoogle Scholar
  2. Beig, G., and V. Singh, 2007: Trends in tropical tropospheric column ozone from satellite data and MOZART model. Geophys. Res. Lett., 34, L17801, doi: 10.1029/2007GL030460.CrossRefGoogle Scholar
  3. Chang, W. Y., H. Liao, and H. J. Wang, 2009: Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951–2000. Adv. Atmos. Sci., 26, 748–762, doi: 10.1007/s00376-009-9032-4.CrossRefGoogle Scholar
  4. Chen, X., F. X. Huang, X. Q. Xia, et al., 2015: Analysis of tropospheric ozone long-term changing trends and affecting factors over northern China. Chinese Sci. Bull., 60, 2659–2666, doi: 10.1360/N972015-00155. (in Chinese)CrossRefGoogle Scholar
  5. Cionni, I., V. Eyring, J. F. Lamarque, et al., 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11267–11292, doi: 10.5194/acp-11-11267-2011.CrossRefGoogle Scholar
  6. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.CrossRefGoogle Scholar
  7. Ding, A. J., T. Wang, V. Thouret, et al., 2008: Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys., 8, 1–13, doi: 10.5194/acp-8-1-2008.CrossRefGoogle Scholar
  8. Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2335, doi: 10.1175/1520-0469(1991)048.CrossRefGoogle Scholar
  9. Emanuel, K. A., and M. ŽIvković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766–1782, doi: 10.1175/1520-0469(1999)056.CrossRefGoogle Scholar
  10. Giorgi, F., E. Coppola, F. Solmon, et al., 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 7–29, doi: 10.3354/cr01018.CrossRefGoogle Scholar
  11. Höglund-Isaksson, L., 2012: Global anthropogenic methane emissions 2005–2030: Technical mitigation potentials and costs. Atmos. Chem. Phys., 12, 9079–9096, doi: 10.5194/acp-12-9079-2012.CrossRefGoogle Scholar
  12. Holtslag, A. A. M., E. I. F. De Bruijn, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575, doi: 10.1175/1520-0493(1990)118.CrossRefGoogle Scholar
  13. Hou, X. W., B. Zhu, D. D. Fei, et al., 2016: Simulation of tropical tropospheric ozone variation from 1982 to 2010: The meteorological impact of two types of ENSO event. J. Geophys. Res. Atmos., 121, 9220–9236, doi: 10.1002/2016JD024945.CrossRefGoogle Scholar
  14. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G. K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  15. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: 10.1175/1520-0477(1996)077.CrossRefGoogle Scholar
  16. Klimont, Z., S. J. Smith, and J. Cofala, 2013: The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett., 8, 014003, doi: 10.1088/1748-9326/8/1/014003.CrossRefGoogle Scholar
  17. Li, X. Q., M. F. Ting, C. H. Li, et al., 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 4107–4125, doi: 10.1175/JCLI-D-14-00559.1.CrossRefGoogle Scholar
  18. Li, S., T. J. Wang, F. Solmon, et al., 2016: Impact of aerosols on regional climate in southern and northern China during strong/weak East Asian summer monsoon years. J. Geophys. Res. Atmos., 121, 4069–4081, doi: 10.1002/2015JD023892.CrossRefGoogle Scholar
  19. Menon, S., J. Hansen, L. Nazarenko, et al., 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253, doi: 10.1126/science.1075159.CrossRefGoogle Scholar
  20. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: TMRR, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, doi: 10.1029/97jd00237.CrossRefGoogle Scholar
  21. Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional- scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos., 105, 29579–29594, doi: 10.1029/2000jd900415.CrossRefGoogle Scholar
  22. Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, doi: 10.1175/1520-0442(2002)015.CrossRefGoogle Scholar
  23. Shalaby, A., A. S. Zakey, A. B. Tawfik, et al., 2012: Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci. Model Dev., 5, 741–760, doi: 10.5194/gmd-5-741-2012.CrossRefGoogle Scholar
  24. Shindell, D., G. Faluvegi, A. Lacis, et al., 2006: Role of tropospheric ozone increases in 20th-century climate change. J. Geophys. Res. Atmos., 111, D08302, doi: 10.1029/2005JD006348.Google Scholar
  25. Shindell, D. T., A. Voulgarakis, G. Faluvegi, et al., 2012: Precipitation response to regional radiative forcing. Atmos. Chem. Phys., 12, 6969–6982, doi: 10.5194/acp-12-6969-2012.CrossRefGoogle Scholar
  26. Skeie, R. B., T. K. Berntsen, G. Myhre, et al., 2011: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys., 11, 11827–11857, doi: 10.5194/acp-11-11827-2011.CrossRefGoogle Scholar
  27. Solmon, F., F. Giorgi, and C. Liousse, 2006: Aerosol modelling for regional climate studies: Application to anthropogenic particles and evaluation over a European/African domain. Tellus B, 58, 51–72, doi: 10.1111/j.1600-0889.2005.00155.x.CrossRefGoogle Scholar
  28. Solmon, F., M. Mallet, N. Elguindi, et al., 2008: Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys. Res. Lett., 35, L24705, doi: 10.1029/2008GL035900.CrossRefGoogle Scholar
  29. Song, F. F., T. J. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603, doi: 10.1002/2013GL058705.CrossRefGoogle Scholar
  30. Søvde, O. A., C. R. Hoyle, G. Myhre, et al., 2011: The HNO3 forming branch of the HO2 + NO reaction: Pre-industrial-topresent trends in atmospheric species and radiative forcings. Atmos. Chem. Phys., 11, 8929–8943, doi: 10.5194/acp-11-8929-2011.CrossRefGoogle Scholar
  31. Stevenson, D. S., P. J. Young, V. Naik, et al., 2013: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 3063–3085, doi: 10.5194/acp-13-3063-2013.CrossRefGoogle Scholar
  32. Stohl, A., Z. Klimont, S. Eckhardt, et al., 2013: Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys., 13, 8833–8855, doi: 10.5194/acp-13-8833-2013.CrossRefGoogle Scholar
  33. Stohl, A., B. Aamaas, M. Amann, et al., 2015: Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys., 15, 10529–10566, doi: 10.5194/acp-15-10529-2015.CrossRefGoogle Scholar
  34. Wang, T. J., M. Xie, L. J. Gao, et al., 2004: Development and preliminary application of a coupled regional climate–chemistry model system. J. Nanjing Univ. (Nat. Sci.), 40, 711–727, doi: 10.3321/j.issn:0469-5097.2004.06.007. (in Chinese)Google Scholar
  35. Wang, T., X. L. Wei, A. J. Ding, et al., 2009: Increasing surface ozone concentrations in the background atmosphere of southern China, 1994–2007. Atmos. Chem. Phys., 9, 6217–6227, doi: 10.5194/acp-9-6217-2009.CrossRefGoogle Scholar
  36. Wang, W. G., J. Wu, H. N. Liu, et al., 2005: Researches on the influence of pollution emission on tropospheric ozone variation and radiation over China and its adjacent area. Chinese J. Atmos. Sci., 29, 734–746, doi: 10.3878/j.issn.1006-9895.2005.05.07. (in Chinese)Google Scholar
  37. Wang, Y., P. Konopka, Y. Liu, et al., 2012: Tropospheric ozone trend over Beijing from 2002–2010: Ozonesonde measurements and modeling analysis. Atmos. Chem. Phys., 12, 8389–8399, doi: 10.5194/acp-12-8389-2012.CrossRefGoogle Scholar
  38. Wu, J., W. M. Jiang, H. N. Liu, et al., 2003: The influence of increasing ozone in troposphere on air temperature in China. Plateau Meteor., 22, 132–142, doi: 10.3321/j.issn:1000-0534.2003.02.006. (in Chinese)Google Scholar
  39. Wu, P. L., N. Christidis, and P. Stott, 2013: Anthropogenic impact on earth’s hydrological cycle. Nat. Climate Change, 3, 807–810, doi: 10.1038/nclimate1932.CrossRefGoogle Scholar
  40. Xie, B., H. Zhang, Z. L. Wang, et al., 2016: A modeling study of effective radiative forcing and climate response due to tropospheric ozone. Adv. Atmos. Sci., 33, 819–828, doi: 10.1007/s00376-016-5193-0.CrossRefGoogle Scholar
  41. Zakey, A. S., F. Solmon, and F. Giorgi, 2006: Implementation and testing of a desert dust module in a regional climate model. Atmos. Chem. Phys., 6, 4687–4704, doi: 10.5194/acp-6-4687-2006.CrossRefGoogle Scholar
  42. Zakey, A. S., F. Giorgi, and X. Bi, 2008: Modeling of sea salt in a regional climate model: Fluxes and radiative forcing. J. Geophys. Res. Atmos., 113, D14221, doi: 10.1029/2007JD009209.CrossRefGoogle Scholar
  43. Zhang, L., and T. Li, 2016: Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 years in CMIP5 models. Geophys. Res. Lett., 43, 5295–5301, doi: 10.1002/2016GL069282.CrossRefGoogle Scholar
  44. Zhou, Y., J. Jiang, A. N. Huang, et al., 2013: Possible contribution of heavy pollution to the decadal change of rainfall over eastern China during the summer monsoon season. Environ. Res. Lett., 8, 044024, doi: 10.1088/1748-9326/8/4/044024.CrossRefGoogle Scholar
  45. Ziemke, J. R., S. Chandra, B. N. Duncan, et al., 2006: Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. Atmos., 111, D19303, doi: 10.1029/2006JD007089.CrossRefGoogle Scholar
  46. Ziemke, J. R., S. Chandra, G. J. Labow, et al., 2011: A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmos. Chem. Phys., 11, 9237–9251, doi: 10.5194/acp-11-9237-2011.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shu Li
    • 1
  • Tijian Wang
    • 1
  • Prodromos Zanis
    • 2
  • Dimitris Melas
    • 3
  • Bingliang Zhuang
    • 1
  1. 1.School of Atmospheric Sciences, CMA–NJU Joint Laboratory for Climate Prediction Studies, Jiangsu Collaborative Innovation Center for Climate ChangeNanjing UniversityNanjingChina
  2. 2.Department of Meteorology and ClimatologySchool of Geology, Aristotle University of ThessalonikiThessalonikiGreece
  3. 3.Laboratory of Atmospheric Physics, Department of Applied and Environmental Physics, School of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations