Advertisement

Journal of Meteorological Research

, Volume 32, Issue 1, pp 69–80 | Cite as

Characteristics of Turbulent Transfer during Episodes of Heavy Haze Pollution in Beijing in Winter 2016/17

  • Yan Ren
  • Shuwen Zheng
  • Wei Wei
  • Bingui Wu
  • Hongsheng Zhang
  • Xuhui Cai
  • Yu Song
Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Beijing-Tianjin-Hebei Area of China
  • 56 Downloads

Abstract

We analyzed the structure and evolution of turbulent transfer and the wind profile in the atmospheric boundary layer in relation to aerosol concentrations during an episode of heavy haze pollution from 6 December 2016 to 9 January 2017. The turbulence data were recorded at Peking University’s atmospheric science and environment observation station. The results showed a negative correlation between the wind speed and the PM2.5 concentration. The turbulence kinetic energy was large and showed obvious diurnal variations during unpolluted (clean) weather, but was small during episodes of heavy haze pollution. Under both clean and heavy haze conditions, the relation between the non-dimensional wind components and the stability parameter z/L followed a 1/3 power law, but the normalized standard deviations of the wind speed were smaller during heavy pollution events than during clean periods under near-neutral conditions. Under unstable conditions, the normalized standard deviation of the potential temperature σ θ /|θ*| was related to z/L, roughly following a –1/3 power law, and the ratio during pollution days was greater than that during clean days. The three-dimensional turbulence energy spectra satisfied a –2/3 power exponent rate in the high-frequency band. In the low-frequency band, the wind velocity spectrum curve was related to the stability parameters under clear conditions, but was not related to atmospheric stratification under polluted conditions. In the dissipation stage of the heavy pollution episode, the horizontal wind speed first started to increase at high altitudes and then gradually decreased at lower altitudes. The strong upward motion during this stage was an important dynamic factor in the dissipation of the heavy haze.

Keywords

haze turbulence wind profile atmospheric boundary layer Beijing metropolitan area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, J. F., T. M. Dunbar, E. G. Nemitz, et al., 2011: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos. Chem. Phys., 11, 2111–2125, doi: 10.5194/acp-11-2111-2011.CrossRefGoogle Scholar
  2. Bilde, M., and B. Svenningsson, 2004: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase. Tellus B, 56, 128–134, doi: 10.3402/tellusb.v56i2.16406.CrossRefGoogle Scholar
  3. Broersen, P. M. T., 2002: Automatic spectral analysis with time series models. IEEE Trans. Instrum. Meas., 51, 211–216, doi: 10.1109/19.997814.CrossRefGoogle Scholar
  4. Chambers, S. D., F. J. Wang, A. G. Williams, et al., 2015: Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmos. Environ., 107, 233–243, doi: 10.1016/j.atmosenv.2015.02.016.CrossRefGoogle Scholar
  5. Chen, Z. H., S. Y. Cheng, J. B. Li, et al., 2008: Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China. Atmos. Environ., 42, 6078–6087, doi: 10.1016/j.atmosenv.2008.03.043.CrossRefGoogle Scholar
  6. Deng, X. J., F. Li, D. Wu, et al., 2011: Turbulence and mass exchange characteristics of typical clean and pollution process over Guangzhou region. China Environ. Sci., 31, 1424–1430. (in Chinese)Google Scholar
  7. Fu, G. Q., W. Y. Xu, R. F. Yang, et al., 2014: The distribution and trends of fog and haze in the North China Plain over the past 30 years. Atmos. Chem. Phys., 14, 11949–11958, doi: 10.5194/acp-14-11949-2014.CrossRefGoogle Scholar
  8. Gao, Z. Q., L. G. Bian, Z. G. Chen, et al., 2006: Turbulent variance characteristics of temperature and humidity over a nonuniform land surface for an agricultural ecosystem in China. Adv. Atmos. Sci., 23, 365–374, doi: 10.1007/s00376-006-0365-y.CrossRefGoogle Scholar
  9. Grant, A. L. M., and R. D. Watkins, 1989: Errors in turbulence measurements with a sonic anemometer. Bound.-Layer Meteor., 46, 181–189, doi: 10.1007/BF00118453.CrossRefGoogle Scholar
  10. Guo, S., M. Hu, M. L. Zamora, et al., 2014: Elucidating severe urban haze formation in China. Proc. Nat. Aca. Sci. USA, 111, 17373–17378, doi: 10.1073/pnas.1419604111.CrossRefGoogle Scholar
  11. Holzworth, G. C., 1967: Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J. Appl. Meteor., 6, 1039–1044, doi: 10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2.CrossRefGoogle Scholar
  12. Kaimal, J. C., J. C. Wyngaard, Y. Izumi, et al., 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563–589, doi: 10.1002/(ISSN)1477-870X.CrossRefGoogle Scholar
  13. Kang, H. Q., B. Zhu, J. F. Su, et al., 2013: Analysis of a long-lasting haze episode in Nanjing, China. Atmos. Res., 120–121, 78–87, doi: 10.1016/j.atmosres.2012.08.004.CrossRefGoogle Scholar
  14. Li, M. N., S. J. Niu, S. T. Zhang, et al., 2015: Comparative study of turbulent characteristics between the fog day and haze day in Nanjing. Acta Meteor. Sinica, 73, 593–608, doi: 10.11676/qxxb2015.032. (in Chinese)Google Scholar
  15. Li, W. J., S. Z. Zhou, X. F. Wang, et al., 2011: Integrated evaluation of aerosols from regional brown hazes over northern China in winter: Concentrations, sources, transformation, and mixing states. J. Geophys. Res., 116, D09301, doi: 10.1029/2010JD015099.Google Scholar
  16. Li, Z. Q., X. Gu, L. Wang, et al., 2013: Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos. Chem. Phys., 13, 10171–10183, doi: 10.5194/acp-13-10171-2013.CrossRefGoogle Scholar
  17. Liu, L. X., X. L. Lin, and W. D. Guo, 2014: A study of the impacts of aerosols on micrometeorological characteristics and energy budget in the western Yangtze River delta. J. Nanjing Univ., 6, 800–809, doi: 10.13232/j.cnki.jnju.2014.06.008. (in Chinese)Google Scholar
  18. Liu, M. X., H. S. Zhang, X. Z. Song, et al., 2008: Spectral characteristics of atmospheric turbulence over various surface conditions. Acta Sci. Nat. Univ. Pekinensis, 44, 391–398, doi: 1000-0534(2004)05-0598-07. (in Chinese)Google Scholar
  19. Liu, Y., F. Hu, S. G. Wang, et al., 2003: Preliminary study of the variety of stable atmospheric boundary layer in Lanzou city zone. J. Graduate School Chinese Acad. Sci., 20, 482–487. (in Chinese)Google Scholar
  20. Ma, J. Z., X. B. Xu, C. S. Zhao, et al., 2012: A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Adv. Atmos. Sci., 29, 1006–1026, doi: 10.1007/s00376-012-1188-7.CrossRefGoogle Scholar
  21. Ma, Y. M., W. Q. Ma, Z. Y. Hu, et al., 2002: Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai–Xizang Plateau. Plateau Meteor., 21, 514–517. (in Chinese)Google Scholar
  22. Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence— Models and Methods for Engineering Applications. John Wiley & Sons, 156–173.Google Scholar
  23. Qi, Y. Q., J. M. Wang, L. Jia, et al., 1996: A study of turbulent transfer characteristics in Wudaoliang area of Qinghai–Xizang Plateau. Plateau Meteor., 15, 172–177. (in Chinese)Google Scholar
  24. Quan, J. N., Y. Gao, Q. Zhang, et al., 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 34–40, doi: 10.1016/j.partic.2012.04.005.CrossRefGoogle Scholar
  25. Rigby, M., and R. Toumi, 2008: London air pollution climatology: Indirect evidence for urban boundary layer height and wind speed enhancement. Atmos. Environ., 42, 4932–4947, doi: 10.1016/j.atmosenv.2008.02.031.CrossRefGoogle Scholar
  26. Roth, M., 1993: Turbulent transfer relationships over an urban surface. II: Integral statistics. Quart. J. Roy. Meteor. Soc., 119, 1105–1120, doi: 10.1002/(ISSN)1477-870X.Google Scholar
  27. Sorbjan, Z., 1988: Local similarity in the convective boundary layer (CBL). Bound.-Layer Meteor., 45, 237–250, doi: 10.1007/BF01066672.CrossRefGoogle Scholar
  28. Su, H. B., and Z. X. Hong, 1994: An experimental study of turbulence in northern suburban surface layer of Beijing. Chinese J. Atmos. Sci., 18, 739–750. (in Chinese)Google Scholar
  29. Sun, F., D. W. Zhang, R. W. Sun, et al., 2014: Typical heavy pollution episode analysis on PM2.5 in winter of Beijing. Environ. Monit. China, 30, 1–12, doi: 1008-1534(2015)04-0364-07. (in Chinese)Google Scholar
  30. Sun, Y. L., G. S. Zhuang, A. H. Tang, et al., 2006: Chemical characteristics of PM2.5 and PM10 in haze–fog episodes in Beijing. Environ. Sci. Technol., 40, 3148–3155, doi: 10.1021/es051533g.CrossRefGoogle Scholar
  31. Wang, G. Y., and J. N. Sun, 2014: Characteristics of turbulence spectra in the urban roughness layer. J. Nanjing Univ., 50, 820–828, doi: 10.1007/s10546-014-9966-7. (in Chinese)Google Scholar
  32. Wang, W. G., and G. G. Zheng, 2013: Green Book of Climate Change: Annual Report on Actions to Address Climate Change: Focus on Low Carbon Urbanization. Social Sciences Academic Press, 221 pp. (in Chinese)Google Scholar
  33. Wang, X. F., W. X. Wang, L. X. Yang, et al., 2012: The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos. Environ., 63, 68–76, doi: 10.1016/j.atmosenv.2012.09.029.CrossRefGoogle Scholar
  34. Wang, Y., G. S. Zhuang, Y. L. Sun, et al., 2006: The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ., 40, 6579–6591, doi: 10.1016/j.atmosenv.2006.05.066.CrossRefGoogle Scholar
  35. Wang, Z. S., F. Sun, Q. H. Qiu, et al., 2015: Analyzing characteristics of heavy air pollution events during the winter in urban Beijing. Environ. Sci. Technol., 28, 47–53, doi: 10.3969/j.issn.1674-4829.2015.02.012. (in Chinese)Google Scholar
  36. Wehner, B., and A. Wiedensohler, 2003: Long term measurements of submicrometer urban aerosols: Statistical analysis for correlations with meteorological conditions and trace gases. Atmos. Chem. Phys., 3, 867–879.CrossRefGoogle Scholar
  37. Wei, Y. X., Y. Q. Tong, Y. Yan, et al., 2009: The variety of main air pollutants concentration and its relationship with meteorological condition in Nanjing City. Trans. Atmos. Sci., 32, 451–457. (in Chinese)Google Scholar
  38. Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127–150, doi: 10.1023/A:1018966204465.CrossRefGoogle Scholar
  39. Wood, C. R., A. Lacser, J. F. Barlow, et al., 2010: Turbulent flow at 190-m height above London during 2006–2008. A climatology and the applicability of similarity theory. Bound.-Layer Meteor., 137, 77–96, doi: 10.1007/s10546-010-9516-x.Google Scholar
  40. Wyngaard, J. C., O. R. Coté, and Y. Izumi, 1971: Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28, 1171–1182, doi: 10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2.CrossRefGoogle Scholar
  41. Xu, Y. Y., S. H. Liu, F. Hu, et al., 2009: Influence of Beijing urbanization on the characteristics of atmospheric boundary layer. Chinese J. Atmos. Sci., 33, 859–867. (in Chinese)Google Scholar
  42. Xu, Z. W., S. M. Liu, L. J. Gong, et al., 2008: A study on the data processing and quality assessment of the eddy covariance system. Adv. Earth Sci., 23, 357–370. (in Chinese)Google Scholar
  43. Zhang, A. C., J. Lyu, B. Zhang, et al., 1991: The turbulence characteristics in the boundary layer of the rural area and border of urban area of Beijing. Chinese J. Atmos. Sci., 15, 87–96. (in Chinese)Google Scholar
  44. Zhang, B., Y. X. Wang, and J. M. Hao, 2014: Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter. Atmos. Chem. Phys., 15, 2387–2404, doi: 10.5194/acp-15-2387-2015.CrossRefGoogle Scholar
  45. Zhang, H. B., C. H. Guan, S. X. Huang, et al., 2016: Local similarity study on turbulence of the Haerbaling meteorological tower in Changbai Mountains. J. Meteor. Sci., 36, 474–482, doi: 10.3969/2015jms.0020. (in Chinese)Google Scholar
  46. Zhang, H. S., F. Y. Li, and J. Y. Chen, 2004: Statistical characteristics of atmospheric turbulence in different underlying surface conditions. Plateau Meteor., 23, 598–604. (in Chinese)Google Scholar
  47. Zhang, X. Y., Y. Q. Wang, T. Niu, et al., 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 11, 26571–26615, doi: 10.5194/acpd-11-26571-2011.CrossRefGoogle Scholar
  48. Zhang, X. Y., J. Y. Sun, Y. Q. Wang, et al., 2013: Factors contributing to haze and fog in China. Chinese Sci. Bull., 58, 1178–1187, doi: 10.1360/972013-150. (in Chinese)CrossRefGoogle Scholar
  49. Zhang, Y. H., M. Hu, L. J. Zhong, et al., 2008: Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview. Atmos. Environ., 42, 6157–6173, doi: 10.1016/j.atmosenv.2008.03.025.CrossRefGoogle Scholar
  50. Zhao, P. S., X. L. Zhang, X. F. Xu, et al., 2011: Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res., 101, 711–718, doi: 10.1016/j.atmosres.2011.04.019.CrossRefGoogle Scholar
  51. Zhao, X. J., P. S. Zhao, J. Xu, et al., 2013: Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys., 13, 5685–5696, doi: 10.5194/acp-13-5685-2013.CrossRefGoogle Scholar
  52. Zhou, M. Y., W. Q. Yao, X. D. Xu, et al., 2005: Vertical dynamic and thermodynamic characteristics of urban lower boundary layer and its relationship with aerosol concentration over Beijing. Sci. China Ser. D Earth Sci., 48, 25–37.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yan Ren
    • 1
  • Shuwen Zheng
    • 1
  • Wei Wei
    • 2
  • Bingui Wu
    • 3
  • Hongsheng Zhang
    • 1
  • Xuhui Cai
    • 4
  • Yu Song
    • 4
  1. 1.Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  3. 3.Tianjin Meteorological BureauTianjinChina
  4. 4.State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental SciencePeking UniversityBeijingChina

Personalised recommendations