Advertisement

Journal of Meteorological Research

, Volume 32, Issue 2, pp 203–218 | Cite as

Atmospheric Circulation Patterns over East Asia and Their Connection with Summer Precipitation and Surface Air Temperature in Eastern China during 1961–2013

  • Shuping Li
  • Wei Hou
  • Guolin Feng
Regular Articles

Abstract

Based on the NCEP/NCAR reanalysis data and Chinese observational data during 1961–2013, atmospheric circulation patterns over East Asia in summer and their connection with precipitation and surface air temperature in eastern China as well as associated external forcing are investigated. Three patterns of the atmospheric circulation are identified, all with quasi-barotropic structures: (1) the East Asia/Pacific (EAP) pattern, (2) the Baikal Lake/Okhotsk Sea (BLOS) pattern, and (3) the eastern China/northern Okhotsk Sea (ECNOS) pattern. The positive EAP pattern significantly increases precipitation over the Yangtze River valley and favors cooling north of the Yangtze River and warming south of the Yangtze River in summer. The warm sea surface temperature anomalies over the tropical Indian Ocean suppress convection over the northwestern subtropical Pacific through the Ekman divergence induced by a Kelvin wave and excite the EAP pattern. The positive BLOS pattern is associated with below-average precipitation south of the Yangtze River and robust cooling over northeastern China. This pattern is triggered by anomalous spring sea ice concentration in the northern Barents Sea. The anomalous sea ice concentration contributes to a Rossby wave activity flux originating from the Greenland Sea, which propagates eastward to North Pacific. The positive ECNOS pattern leads to below-average precipitation and significant warming over northeastern China in summer. The reduced soil moisture associated with the earlier spring snowmelt enhances surface warming over Mongolia and northeastern China and the later spring snowmelt leads to surface cooling over Far East in summer, both of which are responsible for the formation of the ECNOS pattern.

Key words

atmospheric circulation patterns precipitation surface air temperature external forcing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the reviewers for their constructive comments and suggestions that led to significant improvements in this paper. We also thank Dr. Yanjun Guo for her constructive suggestions about the snow cover extent data analysis.

References

  1. Betts, A. K., 2007: Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J. Geophys. Res., 112, D10108, doi: 10.1029/2006JD008191.CrossRefGoogle Scholar
  2. Bond, N. A., J. E. Overland, M. Spillane, et al., 2003: Recent shifts in the state of the North Pacific. Geophys. Res. Lett., 30, 2183, doi: 10.1029/2003GL018597.CrossRefGoogle Scholar
  3. Chen, M. Y., P. P. Xie, J. E. Janowiak, et al., 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249–266, doi: 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.CrossRefGoogle Scholar
  4. Chen, S. F., and R. G. Wu, 2017: Interdecadal changes in the relationship between interannual variations of spring North Atlantic SST and Eurasian surface air temperature. J. Climate, 30, 3771–3787, doi: 10.1175/JCLI-D-16-0477.1.CrossRefGoogle Scholar
  5. Chen, Y., and P. M. Zhai, 2015: Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River valley. Quart. J. Roy. Meteor. Soc., 141, 1389–1403, doi: 10.1002/qj.2448.CrossRefGoogle Scholar
  6. Comiso, J. C., C. L. Parkinson, R. Gersten, et al., 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi: 10.1029/2007GL031972.CrossRefGoogle Scholar
  7. Derksen, C., and R. Brown, 2012: Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett., 39, L19504, doi: 10.1029/2012GL053387.CrossRefGoogle Scholar
  8. Diao, Y. N., S. P. Xie, and D. H. Luo, 2015: Asymmetry of winter European surface air temperature extremes and the North Atlantic oscillation. J. Climate, 28, 517–530, doi: 10.1175/JCLID-13-00642.1.CrossRefGoogle Scholar
  9. Ding, R. Q., K. J. Ha, and J. P. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 1059–1071, doi: 10.1007/s00382-009-0555-2.CrossRefGoogle Scholar
  10. Ding, R. Q., J. P. Li, Y. H. Tseng, et al., 2015a: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res., 120, 27–45, doi: 10.1002/2014JD022221.Google Scholar
  11. Ding, R. Q., J. P. Li, Y. H. Tseng, et al., 2015b: Influence of the North Pacific Victoria mode on the Pacific ITCZ summer precipitation. J. Geophys. Res., 120, 964–979, doi: 10.1002/2014JD022364.Google Scholar
  12. Ding, R. Q., J. P. Li, Y. H. Tseng, et al., 2016: Interdecadal change in the lagged relationship between the Pacific–South American pattern and ENSO. Climate Dyn., 47, 2867–2884, doi: 10.1007/s00382-016-3002-1.CrossRefGoogle Scholar
  13. Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan Ser. II, 70, 373–396, doi: 10.2151/jmsj1965.70.1B_373.CrossRefGoogle Scholar
  14. Feng, J., W. Chen, and Y. J. Li, 2017: Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO. Climate Dyn., 48, 2135–2151, doi: 10.1007/s00382-016-3196-2.CrossRefGoogle Scholar
  15. Gong, D. Y., and C. H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, doi: 10.1029/2001gl014523.CrossRefGoogle Scholar
  16. Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657–659, doi: 10.1126/science.238.4827.657.CrossRefGoogle Scholar
  17. Groisman, P. Y., R. W. Knight, V. N. Razuvaev, et al., 2006: State of the ground: Climatology and changes during the past 69 years over northern Eurasia for a rarely used measure of snow cover and frozen land. J. Climate, 19, 4933–4955, doi: 10.1175/JCLI3925.1.CrossRefGoogle Scholar
  18. Honda, M., K. Yamazaki, Y. Tachibana, et al., 1996: Influence of Okhotsk sea-ice extent on atmospheric circulation. Geophys. Res. Lett., 23, 3595–3598, doi: 10.1029/96GL03474.CrossRefGoogle Scholar
  19. Huang, R. H., 1992: The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. Acta Meteor. Sinica, 6, 25–37.Google Scholar
  20. Huang, R. H., and J. L. Chen, 2010: Characteristics of the summertime water vapor transports over the eastern part of China and those over the western part of China and their difference. Chinese J. Atmos. Sci., 34, 1035–1045. (in Chinese)Google Scholar
  21. Huang, S. S., and M. M. Tang, 1987: On the structure of the summer monsoon regime of East Asia. Scientia Meteorologica Sinica, 8, 1–14. (in Chinese)Google Scholar
  22. Jiang, T., Z. W. Kundzewicz, and B. D. Su, 2008: Changes in monthly precipitation and flood hazard in the Yangtze River basin, China. Int. J. Climatol., 28, 1471–1481, doi: 10.1002/joc.1635.CrossRefGoogle Scholar
  23. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  24. Li, J. P., J. Feng, and Y. Li, 2012: A possible cause of decreasing summer rainfall in northeast Australia. Int. J. Climatol., 32, 995–1005, doi: 10.1002/joc.2328.CrossRefGoogle Scholar
  25. Li, X. Z., W. Zhou, D. L. Chen, et al., 2014: Water vapor transport and moisture budget over eastern China: Remote forcing from the two types of El Niño. J. Climate, 27, 8778–8792, doi: 10.1175/JCLI-D-14-00049.1.CrossRefGoogle Scholar
  26. Li, Y. F., and L. R. Leung, 2013: Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China. J. Climate, 26, 899–917, doi: 10.1175/JCLI-D-12-00075.1.CrossRefGoogle Scholar
  27. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  28. Luo, B. H., and Y. Yao, 2018: Recent rapid decline of the Arctic winter sea ice in Barents–Kara Seas owing to combined Ural Blocking and SST. J. Meteor. Res., 32, 191–202, doi: 10.1007/s13351-018-7104-z.Google Scholar
  29. Matsumura, S., K. Yamazaki, and T. Tokioka, 2010: Summertime land-atmosphere interactions in response to anomalous springtime snow cover in northern Eurasia. J. Geophys. Res., 115, D20107, doi: 10.1029/2009JD012342.CrossRefGoogle Scholar
  30. Matsumura, S., and K. Yamazaki, 2012: Eurasian subarctic summer climate in response to anomalous snow cover. J. Climate, 25, 1305–1317, doi: 10.1175/2011JCLI4116.1.CrossRefGoogle Scholar
  31. Ninomiya, K., and H. Mizuno, 1985: Anomalous cold spell in summer over northeastern Japan caused by northeasterly wind from polar maritime airmass. Part 1: EOF analysis of temperature variation in relation to the large-scale situation causing the cold summer. J. Meteor. Soc. Japan, 63, 845–857, doi: 10.2151/jmsj1965.63.5_845.Google Scholar
  32. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390, doi: 10.2151/jmsj1965.65.3_373.CrossRefGoogle Scholar
  33. Notaro, M., W. C. Wang, and W. Gong, 2006: Model and observational analysis of the Northeast U.S. regional climate and its relationship to the PNA and NAO patterns during early winter. Mon. Wea. Rev., 134, 3479–3505, doi: 10.1175/MWR3234.1.Google Scholar
  34. Park, T. W., C. H. Ho, and S. Yang, 2011: Relationship between the Arctic oscillation and cold surges over East Asia. J. Climate, 24, 68–83, doi: 10.1175/2010JCLI3529.1.CrossRefGoogle Scholar
  35. Qu, X., and G. Huang, 2012: Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. Int. J. Climatol., 32, 2073–2080, doi: 10.1002/joc.2378.CrossRefGoogle Scholar
  36. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  37. Robinson, D. A., K. F. Dewey, and R. R. Heim Jr, 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc., 74, 1689–1696, doi: 10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2.CrossRefGoogle Scholar
  38. Shi, N., and Q. G. Zhu, 1996: An abrupt change in the intensity of the East Asian summer monsoon index and its relationship with temperature and precipitation over East China. Int. J. Climatol., 16, 757–764, doi: 10.1002/(SICI)1097-0088(199607)16:7<757::AID-JOC50>3.0.CO;2-5.CrossRefGoogle Scholar
  39. Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.CrossRefGoogle Scholar
  40. Sun, C., J. P. Li, F. F. Jin, et al., 2013: Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation. Environ. Res. Lett., 8, 044006, doi: 10.1088/1748-9326/8/4/044006.CrossRefGoogle Scholar
  41. Sung, M. K., W. T. Kwon, H. J. Baek, et al., 2006: A possible impact of the North Atlantic oscillation on the East Asian summer monsoon precipitation. Geophys. Res. Lett., 33, L21713, doi: 10.1029/2006GL027253.CrossRefGoogle Scholar
  42. Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627, doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.CrossRefGoogle Scholar
  43. Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology. C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, New York, 353 pp.Google Scholar
  44. Trenberth, K. E., and J. M. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 4358–4365, doi: 10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.CrossRefGoogle Scholar
  45. Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812, doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.CrossRefGoogle Scholar
  46. Wang, J. B., Z. P. Wen, R. G. Wu, et al., 2016: The mechanism of growth of the low-frequency East Asia–Pacific teleconnection and the triggering role of tropical intraseasonal oscillation. Climate Dyn., 46, 3965–3977, doi: 10.1007/s00382-015-2815-7.CrossRefGoogle Scholar
  47. Wang, S. S., J. P. Huang, Y. L. He, et al., 2014: Combined effects of the Pacific decadal oscillation and El Niño–Southern oscillation on global land dry–wet changes. Sci. Rep., 4, 6651, doi: 10.1038/srep06651.CrossRefGoogle Scholar
  48. Wang, W. W., W. Zhou, X. Z. Li, et al., 2016: Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Climate Dyn., 46, 2923–2941, doi: 10.1007/ s00382-015-2741-8.CrossRefGoogle Scholar
  49. Wu, B. Y., R. H. Zhang, and B. Wang, 2009: On the association between spring Arctic sea ice concentration and Chinese summer rainfall: A further study. Adv. Atmos. Sci., 26, 666–678, doi: 10.1029/2009GL037299.CrossRefGoogle Scholar
  50. Wu, B. Y., R. H. Zhang, R. D’Arrigo, et al., 2013: On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. J. Climate, 26, 5523–5536, doi: 10.1175/JCLI-D-12-00524.1.CrossRefGoogle Scholar
  51. Wu, R. G., and B. P. Kirtman, 2007: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate, 20, 1285–1304, doi: 10.1175/JCLI4068.1.CrossRefGoogle Scholar
  52. Wu, Z. W., J. P. Li, Z. H. Jiang, et al., 2012: Possible effects of the North Atlantic oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int. J. Climatol., 32, 794–800, doi: 10.1002/joc.2309.CrossRefGoogle Scholar
  53. Xie, S. P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46, 340–350, doi: 10.1034/j.1600-0870.1994.t01-1-00001.x.CrossRefGoogle Scholar
  54. Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi: 10.1175/2008JCLI2544.1.CrossRefGoogle Scholar
  55. Zhang, L., and T. Li, 2017: Physical processes responsible for the interannual variability of sea ice concentration in Arctic in boreal autumn since 1979. J. Meteor. Res., 31, 468–475, doi: 10.1007/s13351-017-6105-7.CrossRefGoogle Scholar
  56. Zhang, Q. Y., and S. Y. Tao, 1998: Influence of Asian mid-high latitude circulation on east Asian summer rainfall. Acta Meteor. Sinica, 56, 199–211, doi: 10.11676/qxxb1998.019. (in Chinese)Google Scholar
  57. Zhang, R. N., R. H. Zhang, and Z. Y. Zuo, 2017: Impact of Eurasian spring snow decrement on East Asian summer precipitation. J. Climate, 30, 3421–3437, doi: 10.1175/JCLI-D-16-0214.1.CrossRefGoogle Scholar
  58. Zhao, P., Y. N. Zhu, and R. H. Zhang, 2007: An Asian–Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Climate Dyn., 29, 293–303, doi: 10.1007/s00382-007-0236-y.CrossRefGoogle Scholar
  59. Zheng, F., J. P. Li, R. T. Clark, et al., 2013: Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J. Climate, 26, 9860–9879, doi: 10.1175/JCLI-D-13-00204.1.CrossRefGoogle Scholar
  60. Zheng, J. Y., J. P. Li, and J. Feng, 2014: A dipole pattern in the Indian and Pacific oceans and its relationship with the East Asian summer monsoon. Environ. Res. Lett., 9, 074006, doi: 10.1088/1748-9326/9/7/074006.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.National Climate Center, China Meteorological AdministrationBeijingChina
  3. 3.College of Physical Science and TechnologyYangzhou UniversityYangzhouChina

Personalised recommendations