Advertisement

Journal of Meteorological Research

, Volume 32, Issue 2, pp 324–336 | Cite as

Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau

  • Sijia Zhang
  • Donghai Wang
  • Zhengkun Qin
  • Yaoyao Zheng
  • Jianping Guo
Special Collection on Weather and Climate Under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations
  • 119 Downloads

Abstract

Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement (GPM) Integrated MultisatellitE Retrievals for GPM (IMERG) and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), are statistically evaluated over the Tibetan Plateau (TP), with an emphasis on the diurnal variation. The results indicate that: (1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m; (2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and (3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion, GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.

Key words

Global Precipitation Measurement Tropical Rainfall Measuring Mission Tibetan Plateau precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The IMERG Final Run data were provided by the NASA/Goddard Space Flight Center’s Mesoscale Atmospheric Processes Laboratory and PPS, which develop and compute the IMERG as a contribution to GPM, and are archived at the NASA GES DISC (https://pmm.nasa.gov/data-access/downloads/gpm). The TRMM 3B42V7 and 3B43 data were provided by the NASA/Goddard Space Flight and obtained freely online at https://pmm.nasa.gov/data-access/downloads/trmm. We acknowledge the editor and anonymous reviewers for their insightful and constructive comments, which helped improve the original manuscript substantially.

References

  1. Andermann, C., L. Longuevergne, S. Bonnet, et al., 2012: Impact of transient groundwater storage on the discharge of Himalayan rivers. Nature Geosci., 5, 127–132, doi: 10.1038/ngeo1356.CrossRefGoogle Scholar
  2. Bai, A. J., C. H. Liu, and X. D. Liu, 2008: Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis. Chinese J. Geophys., 51, 518–528, doi: 10.1002/cjg2.1242.CrossRefGoogle Scholar
  3. Chen, F. R., and X. Li, 2016: Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens., 8, 472, doi: 10.3390/rs8060472.CrossRefGoogle Scholar
  4. Cimini, D., F. Romano, E. Ricciardelli, et al., 2013: Validation of satellite OPEMW precipitation product with ground-based weather radar and rain gauge networks. Atmos. Meas. Tech., 6, 3181–3196, doi: 10.5194/amt-6-3181-2013.CrossRefGoogle Scholar
  5. Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and modelsimulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 6377–6402, doi: 10.1029/98JD02720.CrossRefGoogle Scholar
  6. Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64, doi: 10.1175/BAMS-88-1-47.CrossRefGoogle Scholar
  7. Fujinami, H., S. Nomura, and T. Yasunari, 2005: Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. Sola, 1, 49–52, doi: 10.2151/sola.2005-014.CrossRefGoogle Scholar
  8. Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837–849, doi: 10.5194/hess-17-837-2013.CrossRefGoogle Scholar
  9. Guo, J. P., P. M. Zhai, L. Wu, et al., 2014: Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. Int. J. Climatol., 34, 2940–2956, doi: 10.1002/joc.3886.Google Scholar
  10. Guo, H., S. Chen, A. M. Bao, et al., 2016: Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos. Res., 176–177, 121–133, doi: 10.1016/j.atmosres.2016.02.020.CrossRefGoogle Scholar
  11. Hong, Y., K. L. Hsu, S. Sorooshian, et al., 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 1834–1853, doi: 10.1175/JAM2173.1.CrossRefGoogle Scholar
  12. Hou, A. Y., R. K. Kakar, S. P. Neeck, et al., 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722, doi: 10.1175/BAMS-D-13-00164.1.CrossRefGoogle Scholar
  13. Hsu, K. L., X. G. Gao, S. Sorooshian, et al., 1997: Precipitation estimation from remotely sensed information using artifical neural networks. J. Appl. Meteor., 36, 1176–1190, doi: 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.CrossRefGoogle Scholar
  14. Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Guasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol., 8, 38–55, doi: 10.1175/JHM560.1.CrossRefGoogle Scholar
  15. Joyce, R. J., J. E. Janowiak, P. A. Arkin, et al., 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol., 5, 487–503, doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.CrossRefGoogle Scholar
  16. Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 1109–1116, doi: 10.5194/hess-15-1109-2011.CrossRefGoogle Scholar
  17. Kidd, C., P. Bauer, J. Turk, et al., 2012: Intercomparison of highresolution precipitation products over northwest Europe. J. Hydrometeorol., 13, 67–83, doi: 10.1175/JHM-D-11-042.1.CrossRefGoogle Scholar
  18. Kirstetter, P. E., Y. Hong, J. J. Gourley, et al., 2013: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar-based national mosaic QPE. J. Hydrometeorol., 14, 661–669, doi: 10.1175/JHM-D-12-030.1.CrossRefGoogle Scholar
  19. Liu, L. P., J. M. Feng, R. Z. Chu, et al., 2002: The diurnal variation of precipitation in monsoon season in the Tibetan Plateau. Adv. Atmos. Sci., 19, 365–378, doi: 10.1007/s00376-002-0028-6.CrossRefGoogle Scholar
  20. Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeorol., 17, 777–790, doi: 10.1175/JHM-D-15-0068.1.CrossRefGoogle Scholar
  21. Ma, Y. Z., G. Q. Tang, D. Long, et al., 2016: Similarity and error intercomparison of the GPM and its predecessor-TRMM Multisatellite Precipitation Analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens., 8, 569, doi: 10.3390/rs8070569.CrossRefGoogle Scholar
  22. Oliveira, R., V. Maggioni, D. Vila, et al., 2016: Characteristics and diurnal cycle of GPM rainfall estimates over the central Amazon region. Remote Sens., 8, 544, doi: 10.3390/rs8070544.CrossRefGoogle Scholar
  23. Prakash, S., A. K. Mitra, A. AghaKouchak, et al., 2016: A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol., 556, 865–876, doi: 10.1016/j.jhydrol.2016.01.029.CrossRefGoogle Scholar
  24. Prat, O. P., and B. R. Nelson, 2013: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data. J. Climate, 26, 1047–1062, doi: 10.1175/JCLI-D-11-00736.1.CrossRefGoogle Scholar
  25. Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeorol., 10, 149–166, doi: 10.1175/2008JHM1052.1.CrossRefGoogle Scholar
  26. Shen, Y., A. Y. Xiong, Y. Wang, et al., 2010: Performance of high-resolution satellite precipitation products over China. J. Geophys. Res., 115, D02114, doi: 10.1029/2009JD012097.CrossRefGoogle Scholar
  27. Shen, Y., P. Zhao, Y. Pan, et al., 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res., 119, 3063–3075, doi: 10.1002/2013JD020686.Google Scholar
  28. Shige, S., S. Kida, H. Ashiwake, et al., 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242–254, doi: 10.1175/JAMC-D-12-074.1.CrossRefGoogle Scholar
  29. Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295, doi: 10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.CrossRefGoogle Scholar
  30. Singh, P., and K. Nakamura, 2009: Diurnal variation in summer precipitation over the central Tibetan Plateau. J. Geophys. Res., 114, D20107, doi: 10.1029/2009JD011788.CrossRefGoogle Scholar
  31. Sorooshian, S., K. L. Hsu, X. G. Gao, et al., 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 2035–2046, doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.CrossRefGoogle Scholar
  32. Tang, G. Q., Y. Z. Ma, D. Long, et al., 2016: Evaluation of GPM Day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152–167, doi: 10.1016/j.jhydrol.2015.12.008.CrossRefGoogle Scholar
  33. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, doi: 10.1029/2000JD900719.CrossRefGoogle Scholar
  34. Tong, K., F. G. Su, D. Q. Yang, et al., 2014: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol., 519, 423–437, doi: 10.1016/j.jhydrol.2014.07.044.CrossRefGoogle Scholar
  35. Wen, Y. X., A. Behrangi, B. Lambrigtsen, et al., 2016: Evaluation and uncertainty estimation of the latest radar and satellite snowfall products using SNOTEL measurements over mountainous regions in western United States. Remote Sens., 8, 904, doi: 10.3390/rs8110904.CrossRefGoogle Scholar
  36. Wolff, D. B., and B. Fisher, 2009: Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteor. Climatol., 48, 1069–1099, doi: 10.1175/2008JAMC2127.1.CrossRefGoogle Scholar
  37. Xu, R., F. Q. Tian, L. Yang, et al., 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res., 122, 910–924, doi: 10.1002/2016JD025418.Google Scholar
  38. Yong, B., Y. Hong, L. L. Ren, et al., 2012: Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res., 117, D09108, doi: 10.1029/2011JD017069.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sijia Zhang
    • 1
    • 2
  • Donghai Wang
    • 2
  • Zhengkun Qin
    • 1
  • Yaoyao Zheng
    • 3
  • Jianping Guo
    • 4
  1. 1.Joint Center for Data Assimilation Research and ApplicationsNanjing University of Information Science & TechnologyNanjingChina
  2. 2.School of Atmospheric SciencesSun Yat-Sen UniversityZhuhaiChina
  3. 3.Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations