Advertisement

Journal of Meteorological Research

, Volume 32, Issue 2, pp 246–264 | Cite as

Applying the WRF Double-Moment Six-Class Microphysics Scheme in the GRAPES_Meso Model: A Case Study

  • Meng Zhang
  • Hong Wang
  • Xiaoye Zhang
  • Yue Peng
  • Huizheng Che
Special Collection on Aerosol-Cloud-Radiation Interactions
  • 20 Downloads

Abstract

This study incorporated the Weather Research and Forecasting (WRF) model double-moment 6-class (WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_Meso). A rainfall event that occurred during 3–5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme (WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei (CCN) number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration (Nc) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration (Nr), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.

Key words

mesoscale version of the Global/Regional Assimilation and Prediction System WRF single-moment 6-class scheme microphysics scheme double moment cloud condensation nuclei 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bae, S. Y., S.-Y. Hong, and K.-S. S. Lim, 2016: Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model. Adv. Meteor., 2016, 1–11, doi: 10.1155/2016/5070154.CrossRefGoogle Scholar
  2. Baker, M. B., 1997: Cloud microphysics and climate. Science, 276, 1072–1078, doi: 10.1126/science.276.5315.1072.CrossRefGoogle Scholar
  3. Chen, D. H., and X. S. Shen, 2006: Recent progress on GRAPES research and application. J. Appl. Meteor. Sci., 17, 773–777, doi: 10.3969/j.issn.1001-7313.2006.06.014. (in Chinese)Google Scholar
  4. Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445, doi: 10.1007/s11434-008-0494-z.Google Scholar
  5. Chen, Y. D., R. Z. Zhang, D. M. Meng, et al., 2016: Variational assimilation of satellite cloud water/ice path and microphysics scheme sensitivity to the assimilation of a rainfall case. Adv. Atmos. Sci., 33, 1158–1170, doi: 10.1007/s00376-016-6004-3.CrossRefGoogle Scholar
  6. Clark, T. L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857–878, doi: 10.1175/1520-0469(1973)030<0857:NMOTDA>2.0.CO;2.CrossRefGoogle Scholar
  7. Cohard, J.-M., and J.-P. Pinty, 2000a: A comprehensive twomoment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815–1842, doi: 10.1002/qj.49712656613.Google Scholar
  8. Cohard, J.-M., and J.-P. Pinty, 2000b: A comprehensive twomoment warm microphysical bulk scheme. II: 2D experiments with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 126, 1843–1859, doi: 10.1002/qj.49712656614.Google Scholar
  9. Cotton, W. R., G. J. Tripoli, R. M. Rauber, et al., 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680, doi: 10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.CrossRefGoogle Scholar
  10. Deng, Z. Z., C. S. Zhao, N. Ma, et al., 2013: An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain. Atmos. Chem. Phys., 13, 145–176, doi: 10.5194/acp-13-6227-2013.CrossRefGoogle Scholar
  11. Dong, H., H. M. Xu, and Y. L. Luo, 2012: Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model: Sensitivity to cloud microphysical schemes. Chinese J. Atmos. Sci., 36, 145–169, doi: 10.3878/j.issn.1006-9895.2012.01.12. (in Chinese)Google Scholar
  12. Duda, J. D., X. G. Wang, F. Y. Kong, et al., 2014: Using varied microphysics to account for uncertainty in warm-season QPF in a convection-allowing ensemble. Mon. Wea. Rev., 142, 2198–2219, doi: 10.1175/MWR-D-13-00297.1.CrossRefGoogle Scholar
  13. Feng, Q. J., P. R. Li, M. Y. Fan, et al., 2012: Observational analysis of cloud condensation nuclei in some regions of North China. Trans. Atmos. Sci., 35, 533–540, doi: 10.3969/j.issn.1674-7097.2012.05.003. (in Chinese)Google Scholar
  14. Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280,doi:10.1175/1520-0469(1994)051<0249:ADMMPF> 2.0.CO;2.CrossRefGoogle Scholar
  15. Guo, X. L., M. Y. Huang, H. Y. Xu, et al., 1999: Rain category numerical simulations of microphysical processes of precipitation formation in stratiform clouds. Chinese J. Atmos. Sci., 23, 745–752, doi: 10.3878/j.issn.1006-9895.1999.06.11. (in Chinese)Google Scholar
  16. Gao, W. H., F. S. Zhao, Z. J. Hu, et al., 2012: Improved CAMS cloud microphysics scheme and numerical experiment coupled with WRF model. Chinese J. Geophys., 55, 396–405, doi: 10.6038/j.issn.0001-5733.2012.02.004. (in Chinese)Google Scholar
  17. Guo, X. L., D. H. Fu, X. Guo, et al., 2014: A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos. Res., 142, 142–157, doi: 10.1016/j.atmosres.2013.10.006.CrossRefGoogle Scholar
  18. Hall, W. D., 1980: A detailed microphysical model within a twodimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 2486–2507, doi: 10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.CrossRefGoogle Scholar
  19. Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate, 5, 1281–1304, doi: 10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.CrossRefGoogle Scholar
  20. He, H., X. L. Guo, X. E. Liu, et al., 2016: Mesoscale numerical simulation study of warm fog dissipation by salt particles seeding. Adv. Atmos. Sci., 33, 579–592, doi: 10.1007/s00376-015-5151-2.CrossRefGoogle Scholar
  21. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6- class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.Google Scholar
  22. Hong, S.-Y, K.-S. S. Lim, Y.-H. Lee, et al., 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 707253, doi: 10.1155/2010/707253.Google Scholar
  23. Hong, Y. C., and H. Y. Li, 2011: Cloud structure, precipitation mechanism and artificial enhancement precipitation condition for a frontal stratiform cloud system. Plateau Meteor., 30, 1308–1323. (in Chinese)Google Scholar
  24. Hou, T.-J., H.-C. Lei, Z.-X. Hu, et al., 2013: Observations and modeling of ice water content in a mixed-phase cloud system. Atmos. Oceanic Sci. Lett., 6, 210–215, doi: 10.3878/j.issn.1674-2834.13.0020.CrossRefGoogle Scholar
  25. Hou, T. J., H. C. Lei, J. F. Yang, et al., 2016: Investigation of riming within mixed-phase stratiform clouds using weather research and forecasting (WRF) model. Atmos. Res., 178–179, 291–303, doi: 10.1016/j.atmosres.2016.04.007.CrossRefGoogle Scholar
  26. Hu, Z. J., and G. F. He, 1988: Numerical simulation of microphysical processes in cumulonimbus. Part I: Microphysical model. Acta Meteor. Sinica, 2, 471–489.Google Scholar
  27. Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77–110, doi: 10.1016/S0169-8095(96)00005-1.CrossRefGoogle Scholar
  28. Khain, A., A. Pokrovsky, M. Pinsky, et al., 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 2963–2982, doi: 10.1175/JAS-3350.1.Google Scholar
  29. Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639–2663, doi: 10.1256/qj.04.62.CrossRefGoogle Scholar
  30. Kovačević, N., and M. Ćurić, 2015: Precipitation sensitivity to the mean radius of drop spectra: Comparison of single- and double-moment bulk microphysical schemes. Atmosphere, 6, 451–473, doi: 10.3390/atmos6040451.CrossRefGoogle Scholar
  31. Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160–1189, doi: 10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;2.Google Scholar
  32. Li, L., Y. Yin, X. S. Gu, et al., 2014: Observational study of cloud condensation nuclei properties at various altitudes of Huangshan mountains. Chinese J. Atmos. Sci., 38, 410–420, doi: 10.3878/j.issn.1006-9895.2013.13149. (in Chinese)Google Scholar
  33. Li, J. X., Y. Yin, G. Ren, et al., 2015: Observational study of the spatial–temporal distribution of cloud condensation nuclei in Shanxi Province, China. China Environ. Sci., 35, 2261–2271, doi: 10.3969/j.issn.1000-6923.2015.08.003. (in Chinese)Google Scholar
  34. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, doi: 10.1175/2009MWR2968.1.CrossRefGoogle Scholar
  35. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.CrossRefGoogle Scholar
  36. Liu, P. F., C. S. Zhao, T. Göbel, et al., 2011: Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmos. Chem. Phys., 11, 3479–3494, doi: 10.5194/acp-11-3479-2011.CrossRefGoogle Scholar
  37. Lu, G. X., and X. L. Guo, 2012: Distribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing cloud experiment (BCE). Chinese Sci. Bull., 57, 2460–2469, doi: 10.1007/s11434-012-5136-9.CrossRefGoogle Scholar
  38. Ma, N., C. S. Zhao, T. Müller, et al., 2012: A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions. Atmos. Chem. Phys., 12, 2381–2397, doi: 10.5194/acp-12-2381-2012.CrossRefGoogle Scholar
  39. Meyers, M. P., R. L. Walko, J. Y. Harrington, et al., 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 3–39, doi: 10.1016/<1065:BPOTSF>S0169-8095(97)00018-5.Google Scholar
  40. Molthan, A. L., and B. A. Colle, 2012: Comparisons of single-and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 2982–3002, doi: 10.1175/MWR-D-11-00292.1.CrossRefGoogle Scholar
  41. Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 3683–3704, doi: 10.1175/JAS3564.1.CrossRefGoogle Scholar
  42. Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of oneand two-moment schemes. Mon. Wea. Rev., 137, 991–1007, doi: 10.1175/2008MWR2556.1.CrossRefGoogle Scholar
  43. Murakami, M., 1990: Numerical Modeling of dynamical and microphysical evolution of an isolated convective cloud: The 19 July 1981 CCOPE cloud. J. Metor. Soc. Japan, 68, 107–128, doi: 10.2151/jmsj1965.68.2_107.CrossRefGoogle Scholar
  44. Ovtchinnikov, M., and Y. L. Kogan, 2000: An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part I: Model description. J. Atmos. Sci., 57, 2989–3003, doi: 10.1175/1520-0469(2000)057<2989:AIOIPM>2.0.CO;2.Google Scholar
  45. Pinsky, M. B., and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501–533, doi: 10.1256/003590002321042072.CrossRefGoogle Scholar
  46. Ramanathan, V., P. J. Crutzen, J. T, Kiehl, et al., 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124, doi: 10.1126/science.1064034.CrossRefGoogle Scholar
  47. Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497–519, doi: 10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2.Google Scholar
  48. Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107, doi: 10.1002/qj.49712454804.CrossRefGoogle Scholar
  49. Rong, Y. M., and Y. Yin, 2010: The response of convective clouds to aerosol and relative humidity: A numerical study. Chinese J. Atmos. Sci., 34, 815–826, doi: 10.3878/j.issn.1006-9895.2010.04.13. (in Chinese)Google Scholar
  50. Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265–281, doi: 10.1016/S0169-8095(01)00126-0.CrossRefGoogle Scholar
  51. Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Atmos. Phys., 92, 45–66, doi: 10.1007/s00703-005-0112-4.Google Scholar
  52. Shen, X. Y., H. X. Mei, W. G. Wang, et al., 2015: Numerical simulation of ice-phase processes using a double-moment microphysical scheme and a sensitivity test of ice nuclei concentra-tion. Chinese J. Atmos. Sci., 39, 83–99, doi: 10.3878/j.issn.1006-9895.1405.13310. (in Chinese)Google Scholar
  53. Shi, L. X., and Y. Duan, 2007: Observations of cloud condensation nuclei in North China. Acta Meteor. Sinica, 75, 644–652, doi: 10.3321/j.issn:0577-6619.2007.04.016.(in Chinese)Google Scholar
  54. Shi, R. G., Q. J. Liu, and Z. S. Ma, 2015: Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model. Meteor. Mon., 41, 272–285, doi: 10.7519/j.issn.1000-0526.2015.03.002. (in Chinese)Google Scholar
  55. Soong, S.-T, 1974: Numerical simulation of warm rain development in an axisymmetric cloud model. J. Atmos. Sci., 31, 1262–1285, doi: 10.1175/1520-0469(1974)031<1262:NSOWRD>2.0.CO;2.CrossRefGoogle Scholar
  56. Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237–273, doi: 10.1175/JCLI-3243.1.CrossRefGoogle Scholar
  57. Stevens, B., G. Feingold, W. R. Cotton, et al., 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 980–1006, doi: 10.1175/1520-0469(1996)053<0980:EOTMSO>2.0.CO;2.CrossRefGoogle Scholar
  58. Sun, J., X. F. Lou, Z. J. Hu, et al., 2008: Numerical experiment of the coupling of CAMS complex microphysical scheme and GRAPES model. J. Appl. Meteor. Sci., 19, 315–325, doi: 10.3969/j.issn.1001-7313.2008.03.007. (in Chinese)Google Scholar
  59. Sun, J., X. F. Lou, and Y. Q. Shi, 2011: The effects of different microphysical schemes on the simulation of a meiyu front heavy rainfall. Acta Meteor. Sinica, 69, 799–809. (in Chinese)Google Scholar
  60. Takahashi, T., 1975: Tropical showers in an axisymmetric cloud model. J. Atmos. Sci., 32, 1318–1330, doi: 10.1175/1520-0469(1975)032<1318:TSIAAC>2.0.CO;2.CrossRefGoogle Scholar
  61. Tao, Y., H. Y. Li, and Y. C. Hong, 2013: Numerical studies on cloud physics characteristic and influence of the graupel/hail category on cloud and precipitation during a heavy rainstorm over North China. Plateau Meteor., 32, 166–178, doi: 10.7522/j.issn.1000-0534.2012.00017. (in Chinese)Google Scholar
  62. Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542, doi: 10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.Google Scholar
  63. Thompson, G., P. R. Field, R. M. Rasmussen, et al., 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, doi: 10.1175/2008MWR2387.1.Google Scholar
  64. Van Weverberg, K., E. Goudenhoofdt, U. Blahak, et al., 2014: Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation. Atmos. Res., 147–148, 145–161, doi: 10.1016/j.atmosres.2014.05.012.CrossRefGoogle Scholar
  65. Wang, C., and J. S. Chang, 1993: A three-dimensional numerical model of cloud dynamics, microphysics, and chemistry. 1: Concepts and formulation. J. Geophys. Res., 98, 14827–14844, doi: 10.1029/92JD01393.Google Scholar
  66. Wang, H., J. F. Yin, and D. H. Wang, 2014: Comparative analysis of single-moment and double-moment microphysics schemes on a local heavy rainfall in South China. Plateau Meteor., 33, 1341–1351, doi: 10.7522/j.issn.1000-0534.2013.00119. (in Chinese)Google Scholar
  67. Wang, H., G. Y. Shi, X. Y. Zhang, et al., 2015: Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji and its near surrounding region—Part 2: Aerosols’ radiative feedback effects. Atmos. Chem. Phys., 15, 3277–3287, doi: 10.5194/acp-15-3277-2015.CrossRefGoogle Scholar
  68. Wu, X. J., Z. Y. Jin, L. P. Huang, et al., 2005: The software framework and application of GRAPES model. J. Appl. Meteor. Sci., 16, 539–546, doi: 10.3969/j.issn.1001-7313.2005.04.015. (in Chinese)Google Scholar
  69. Wu, H. Y., D. H. Chen, and G. Q. Xu, 2007: Sensitive experiments of various parameterization schemes in different physical processes on Guizhou precipitation. Meteor. Mon., 33, 23–28, doi: 10.3969/j.issn.1000-0526.2007.04.004. (in Chinese)Google Scholar
  70. Xiao, H., and Y. Yin, 2011: A numerical study of polluted aerosol effects on precipitation in Shanxi Province. Chinese J. Atmos. Sci., 35, 235–246, doi: 10.3878/j.issn.1006-9895.2011.02.04. (in Chinese)Google Scholar
  71. Xiao, H., Y. Yin, L. J. Jin, et al., 2015: Simulation of the effects of aerosol on mixed-phase orographic clouds using the WRF model with a detailed bin microphysics scheme. J. Geophys. Res., 120, 8345–8358, doi: 10.1002/2014JD022988.Google Scholar
  72. Xu, G. Q., X. D. Liang, H. Yu, et al., 2007: Precipitation simulation using different cloud–precipitation schemes for a landfall typhoon. Plateau Meteor., 26, 891–900. (in Chinese)Google Scholar
  73. Xu, G. Q., D. H. Chen, J. S. Xue, et al., 2008: The program structure designing and optimizing tests of GRAPES physics. Chinese Sci. Bull., 53, 3470–3476, doi: 10.1007/s11434-008-0418-y.Google Scholar
  74. Xu, G. Q., D. H. Chen, H. L. Zhang, et al., 2010: The impacts of time-level computation precision of physics in the GRAPES model on precipitation prediction. Chinese J. Atmos. Sci., 34, 875–881, doi: 10.3878/j.issn.1006-9895.2010.05.03. (in Chinese)Google Scholar
  75. Yang, X. S., J. L. Hu, D. H. Chen, et al., 2008: Verification of GRAPES unified global and regional numerical weather prediction model dynamic core. Chinese Sci. Bull., 53, 3458–3464, doi: 10.1007/s11434-008-0417-z.Google Scholar
  76. Yang, J. F., H. C. Lei, Z. X. Hu, et al., 2014: Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China. Atmos. Res., 142, 79–90, doi: 10.1016/j.atmosres.2013.12.018.CrossRefGoogle Scholar
  77. Yin, Y., Z. Levin, T. Reisin, et al., 2000: Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics. J. Appl. Meteor., 39, 1460–1472, doi: 10.1175/1520-0450(2000)039<1460:SCCWHF>2.0.CO;2.CrossRefGoogle Scholar
  78. Yin, Y., C. Chen, K. Chen, et al., 2010: An observational study of the microphysical properties of atmospheric aerosol at Mt Huang. Trans. Atmos. Sci., 33, 129–136, doi: 10.3969/j.issn.1674-7097.2010.02.001. (in Chinese)Google Scholar
  79. Yin, Y., Q. Chen, L. J. Jin, et al., 2012: The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study. J. Geophys. Res. Atmos., 117, D22202, doi: 10.1029/2012JD017827.CrossRefGoogle Scholar
  80. Yuan, L., Y. Yin, H. Xiao, et al., 2016: A closure study of aerosol optical properties at a regional background mountainous site in eastern China. Sci. Total Environ., 550, 950–960, doi: 10.1016/j.scitotenv.2016.01.205.CrossRefGoogle Scholar
  81. Zhao, C. S., X. X. Tie, G. Brasseur, et al., 2006: Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing. Geophys. Res. Lett., 33, L16809, doi: 10.1029/2006GL026653.CrossRefGoogle Scholar
  82. Zhao, Z., and H. C. Lei, 2008: A numerical simulation of cloud physical structure and microphysical processes associated with stratiform precipitation in Northwest China. Chinese J. Atmos. Sci., 32, 323–334, doi: 10.3878/j.issn.1006-9895.2008.02.11. (in Chinese)Google Scholar
  83. Zhao, Z., and H. C. Lei, 2014: Aircraft observations of liquid and ice in midlatitude mixed-phase clouds. Adv. Atmos. Sci., 31, 604–610, doi: 10.1007/s00376-013-3083-2.CrossRefGoogle Scholar
  84. Zhao, P. G., Y. Yin, and H. Xiao, 2015: The effects of aerosol on development of thunderstorm electrification: A numerical study. Atmos. Res., 153, 376–391, doi: 10.1016/j.atmosres.2014.09.011.CrossRefGoogle Scholar
  85. Zhou, C., X. Zhang, S. Gong, et al., 2016: Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system. Atmos. Chem. Phys., 16, 145–160, doi: 10.5194/acp-16-145-2016.CrossRefGoogle Scholar
  86. Zhu, G. L., W. T. Lin, and Y. H. Cao, 2014: Numerical simulation of a rainstorm event over South China by using various cloud microphysics parameterization schemes in WRF model and its performance analysis. Chinese J. Atmos. Sci., 38, 513–523, doi: 10.3878/j.issn.1006-9895.2013.13202. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Meng Zhang
    • 1
    • 5
  • Hong Wang
    • 2
  • Xiaoye Zhang
    • 2
    • 3
  • Yue Peng
    • 2
    • 4
  • Huizheng Che
    • 2
  1. 1.Institute of Urban MeteorologyChina Meteorological AdministrationBeijingChina
  2. 2.State Key Laboratory of Severe Weather/Institute of Atmospheric CompositionChinese Academy of Meteorological SciencesBeijingChina
  3. 3.Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  4. 4.Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological AdministrationNanjing University of Information Science & TechnologyNanjingChina
  5. 5.Beijing Meteorological Service CenterBeijingChina

Personalised recommendations