Advertisement

Journal of Meteorological Research

, Volume 32, Issue 1, pp 14–25 | Cite as

Acidity of Aerosols during Winter Heavy Haze Events in Beijing and Gucheng, China

  • Xiyuan Chi
  • Pengzhen He
  • Zhuang Jiang
  • Xiawei Yu
  • Fange Yue
  • Longquan Wang
  • Bokun Li
  • Hui Kang
  • Cheng Liu
  • Zhouqing Xie
Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Beijing-Tianjin-Hebei Area of China

Abstract

We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO42–, NO3, and NH4+ concentrations were 8.3, 12.5, and 14.1 μg m–3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m–3, respectively, at the rural site. The nitrogen and sulfur oxidation ratios in urban Beijing were correlated with relative humidity (with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events. The ISORROPIA II model was used to predict the aerosol pH, which had a mean (range) of 5.0 (4.9–5.2) and 5.3 (4.6–6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO42– and NO3 in haze. We also analyzed the sensitivity of the aerosol pH to changes in the concentrations of SO42–, NO3, and NH4+ under haze conditions. The aerosol pH was more sensitive to the SO42– and NH4+ concentrations with opposing trends, than to the NO3 concentrations. The sensitivity of the pH was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.

Keywords

sulfate nitrate ammonium aerosol acidity haze 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Haochi Che of the Chinese Academy of Meteorological Sciences and Sanxue Ren of the China Meteorological Administration farm at Gucheng for carrying out the sampling at the Beijing and Gucheng site, respectively.

References

  1. Alexander, B., R. J. Park, D. J. Jacob, et al., 2009: Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget. J. Geophys. Res., 114, D02309, doi: 10.1029/2008JD010486.Google Scholar
  2. Arimoto, R., R. A. Duce, D. L. Savoie, et al., 1996: Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J. Geophys. Res., 101, 2011–2023, doi: 10.1029/95JD01071.CrossRefGoogle Scholar
  3. Brook, R. D., S. Rajagopalan, C. A. Pope, et al., 2010: Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378, doi: 10.1161/CIR.0b013e3181dbece1.CrossRefGoogle Scholar
  4. Chameides, W. L., 1984: The photochemistry of a remote marine stratiform cloud. J. Geophys. Res., 89, 4739–4755, doi: 10.1029/JD089iD03p04739.CrossRefGoogle Scholar
  5. Cheng, Y. F., G. J. Zheng, C. Wei, et al., 2016: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv., 2, e1601530, doi: 10.1126/sciadv.1601530.CrossRefGoogle Scholar
  6. Cheng, Z., J. K. Jiang, O. Fajardo, et al., 2013: Characteristics and health impacts of particulate matter pollution in China (2001–2011). Atmos. Environ., 65, 186–194, doi: 10.1016/j.atmosenv.2012.10.022.CrossRefGoogle Scholar
  7. Ehhalt, D. H., and F. Rohrer, 2000: Dependence of the OH concentration on solar UV. J. Geophys. Res., 105, 3565–3571, doi: 10.1029/1999JD901070.CrossRefGoogle Scholar
  8. Fountoukis, C., and A. Nenes, 2007: ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4 +–Na+–SO4 2––NO3––Cl––H2O aerosols. Atmos. Chem. Phys., 7, 4639–4659, doi: 10.5194/acp-7-4639-2007.CrossRefGoogle Scholar
  9. Gao, J., T. Wang, X. H. Zhou, et al., 2009: Measurement of aerosol number size distributions in the Yangtze River delta in China: Formation and growth of particles under polluted conditions. Atmos. Environ., 43, 829–836, doi: 10.1016/j.atmosenv. 2008.10.046.CrossRefGoogle Scholar
  10. Guo, H., L. Xu, A. Bougiatioti, et al., 2015: Fine-particle water and pH in the southeastern United States. Atmos. Chem. Phys., 15, 5211–5228, doi: 10.5194/acp-15-5211-2015.CrossRefGoogle Scholar
  11. Guo, S., M. Hu, M. L. Zamora, et al., 2014: Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA, 111, 17373–17378, doi: 10.1073/pnas.1419604111.CrossRefGoogle Scholar
  12. He, H., Y. S. Wang, Q. X. Ma, et al., 2014: Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Sci. Rep., 4, 4172, doi: 10.1038/srep04172.CrossRefGoogle Scholar
  13. He, K., Q. Zhao, Y. Ma, et al., 2012: Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: Insights into the formation of secondary inorganic aerosols. Atmos. Chem. Phys., 12, 1377–1395, doi: 10.5194/acpd-11-25557-2011.CrossRefGoogle Scholar
  14. Hennigan, C. J., J. Izumi, A. P. Sullivan, et al., 2015: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys., 15, 2775–2790, doi: 10.5194/acp-15-2775-2015.CrossRefGoogle Scholar
  15. Huang, X., Y. Song, M. M. Li, et al., 2012: A high-resolution ammonia emission inventory in China. Global Biogeochem. Cycles, 26, GB1030, doi: 10.1029/2011GB004161.Google Scholar
  16. Jacob, D. J., 2000: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ., 34, 2131–2159, doi: 10.1016/S1352-2310(99)00462-8.CrossRefGoogle Scholar
  17. Jiang, J. K., W. Zhou, Z. Cheng, et al., 2015: Particulate matter distributions in China during a winter period with frequent pollution episodes (January 2013). Aerosol Air Qual. Res., 15, 494–503, doi: 10.4209/aaqr.2014.04.0070.Google Scholar
  18. Keene, W. C., A. A. P. Pszenny, J. R. Maben, et al., 2004: Closure evaluation of size-resolved aerosol pH in the New England coastal atmosphere during summer. J. Geophys. Res., 109, D23307, doi: 10.1029/2004JD004801.CrossRefGoogle Scholar
  19. Liu, X. G., J. Li, Y. Qu, et al., 2013: Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmos. Chem. Phys., 13, 4501–4514, doi: 10.5194/acp-13-4501-2013.CrossRefGoogle Scholar
  20. Lu, K. D., A. Hofzumahaus, F. Holland, et al., 2013: Missing OH source in a suburban environment near Beijing: Observed and modeled OH and HO2 concentrations in summer 2006. Atmos. Chem. Phys., 13, 1057–1080, doi: 10.5194/acp-13-1057-2013.CrossRefGoogle Scholar
  21. Meier, J., B. Wehner, A. Massling, et al., 2009: Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: A comparison of three experimental methods. Atmos. Chem. Phys., 9, 6865–6880, doi: 10.5194/acp-9-6865-2009.CrossRefGoogle Scholar
  22. Meng, Z. Y., X. B. Xu, P. Yan, et al., 2009: Characteristics of trace gaseous pollutants at a regional background station in northern China. Atmos. Chem. Phys., 9, 927–936, doi: 10.5194/acp-9-927-2009.CrossRefGoogle Scholar
  23. Nemitz, E., M. A. Sutton, G. P. Wyers, et al., 2004: Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl. Atmos. Chem. Phys., 4, 989–1005, doi: 10.5194/acp-4-989-2004.Google Scholar
  24. Pan, Y. P., S. L. Tian, D. W. Liu, et al., 2016: Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15Nstable isotope in size-resolved aerosol ammonium. Environ. Sci. Technol., 50, 8049–8056, doi: 10.1021/acs.est.6b00634.CrossRefGoogle Scholar
  25. Pathak, R. K., W. S. Wu, and T. Wang, 2009: Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys., 9, 1711–1722, doi: 10.5194/acp-9-1711-2009.CrossRefGoogle Scholar
  26. Quan, J. N., X. X. Tie, Q. Zhang, et al., 2014: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ., 88, 83–89, doi: 10.1016/j.atmosenv. 2014.01.058.CrossRefGoogle Scholar
  27. Seinfeld, J. H., G. R. Carmichael, R. Arimoto, et al., 2004: ACEASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Amer. Meteor. Soc., 85, 367–380, doi: 10.1175/BAMS-85-3-367.CrossRefGoogle Scholar
  28. Shen, Z. X., J. J. Cao, R. Arimoto, et al., 2009: Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos. Environ., 43, 2911–2918, doi: 10.1016/j.atmosenv.2009.03.005.CrossRefGoogle Scholar
  29. Song, C. H., and G. R. Carmichael, 2001: A three-dimensional modeling investigation of the evolution processes of dust and sea-salt particles in East Asia. J. Geophys. Res., 106, 18131–18154, doi: 10.1029/2000JD900352.CrossRefGoogle Scholar
  30. Streets, D. G., T. C. Bond, G. R. Carmichael, et al., 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108, 8809, doi: 10.1029/2002jd003093.CrossRefGoogle Scholar
  31. Sun, Y. L., G. S. Zhuang, A. H. Tang, et al., 2006: Chemical characteristics of PM2.5 and PM10 in haze–fog episodes in Beijing. Environ. Sci. Technol., 40, 3148–3155, doi: 10.1021/es051533g.CrossRefGoogle Scholar
  32. Sun, Y. L., Z. F. Wang, O. Wild, et al., 2016: “APEC Blue”: Secondary aerosol reductions from emission controls in Beijing. Sci. Rep., 6, 20668, doi: 10.1038/srep20668.CrossRefGoogle Scholar
  33. Sun, Z. Q., Y. J. Mu, Y. J. Liu, et al., 2013: A comparison study on airborne particles during haze days and non-haze days in Beijing. Sci. Total Environ., 456–457, 1–8, doi: 10.1016/j.scitotenv.2013.03.006.CrossRefGoogle Scholar
  34. Van Oss, R., J. Duyzer, and P. Wyers, 1998: The influence of gasto-particle conversion on measurements of ammonia exchange over forest. Atmos. Environ., 32, 465–471, doi: 10.1016/S1352-2310(97)00280-X.CrossRefGoogle Scholar
  35. Wang, Y., G. S. Zhuang, A.H. Tang, et al., 2005: The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ., 39, 3771–3784, doi: 10.1016/j.atmosenv.2005.03.013.CrossRefGoogle Scholar
  36. Wang, Y., G. S. Zhuang, Y. L. Sun, et al., 2006: The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ., 40, 6579–6591, doi: 10.1016/j.atmosenv.2006.05.066.CrossRefGoogle Scholar
  37. Wang, K., Y. Zhang, A. Nenes, et al., 2012: Implementation of dust emission and chemistry into the Community Multiscale Air Quality modeling system and initial application to an Asian dust storm episode. Atmos. Chem. Phys., 12, 10209–10237, doi: 10.5194/acp-12-10209-2012.CrossRefGoogle Scholar
  38. Wang, X. F., W. X. Wang, L. X. Yang, et al., 2012: The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos. Environ., 63, 68–76, doi: 10.1016/j.atmosenv. 2012.09.029.CrossRefGoogle Scholar
  39. Wang, Y., Q. Q. Zhang, K. He, et al., 2013: Sulfate-nitrate-ammonium aerosols over China: Response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys., 13, 2635–2652, doi: 10.5194/acp-13-2635-2013.CrossRefGoogle Scholar
  40. Wang, Y. X., Q. Q. Zhang, J. K. Jiang, et al., 2014: Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. J. Geophys. Res., 119, 10425–10440, doi: 10.1002/2013JD021426.Google Scholar
  41. Wang, Z. F., J. Li, Z. Wang, et al., 2014: Modeling study of regional severe hazes over mid–eastern China in January 2013 and its implications on pollution prevention and control. Sci. China Earth Sci., 57, 3–13, doi: 10.1007/s11430-013-4793-0.CrossRefGoogle Scholar
  42. Wang, G. H., R. Y. Zhang, M. E. Gomez, et al, 2016: Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA,, 113, 113630–113635, doi: 10.1073/pnas.1616540113.Google Scholar
  43. Weber, R. J., H. Y. Guo, A. G. Russell, et al., 2016: High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nat. Geosci., 9, 282–285, doi: 10.1038/ngeo2665.CrossRefGoogle Scholar
  44. WHO, 2006}: Air Quality Guidelines. Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide. Geneva, World Health OrganizationGoogle Scholar
  45. Xu, L., H. Y. Guo, C. M. Boyd, et al., 2015: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. USA, 112, 37–42, doi: 10.1073/pnas.1417609112.CrossRefGoogle Scholar
  46. Yang, F., J. Tan, Q. Zhao, et al., 2011: Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys., 11, 5207–5219, doi: 10.5194/acp-11-5207-2011.CrossRefGoogle Scholar
  47. Yang, Y. R., X. G. Liu, Y. Qu, et al., 2015: Characteristics and formation mechanism of continuous hazes in China: A case study during the autumn of 2014 in the North China Plain. Atmos. Chem. Phys., 15, 8165–8178, doi: 10.5194/acp-15-8165-2015.CrossRefGoogle Scholar
  48. Yao, X. H., C. K. Chan, M. Fang, et al., 2002: The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ., 36, 4223–4234, doi: 10.1016/S1352-2310(02)00342-4.CrossRefGoogle Scholar
  49. Ye, P. P., Z. Q. Xie, J. Yu, et al., 2015: Spatial distribution of methanesulphonic acid in the Arctic aerosol collected during the Chinese Arctic Research Expedition. Atmosphere, 6, 699–712, doi: 10.3390/atmos6050699.CrossRefGoogle Scholar
  50. Zhang, J. K., Y. Sun, Z. R. Liu, et al., 2014: Characterization of submicron aerosols during a month of serious pollution in Beijing. 2013. Atmos. Chem. Phys., 14, 2887–2903, doi: 10.5194/acp-14-2887-2014.CrossRefGoogle Scholar
  51. Zhang, Q., Z. X. Shen, J. J. Cao, et al., 2015: Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi’an, China. Atmos. Environ., 112, 64–71, doi: 10.1016/j.atmosenv.2015.04.033.CrossRefGoogle Scholar
  52. Zhang, R. Y., G. H. Wang, S. Guo, et al., 2015: Formation of urban fine particulate matter. Chem. Rev., 115, 3803–3855, doi: 10.1021/acs.chemrev.5b00067.CrossRefGoogle Scholar
  53. Zhao, M.-J., S.-X. Wang, J.-H. Tan, et al., 2016: Variation of urban atmospheric ammonia pollution and its relation with PM2.5 chemical property in winter of Beijing, China. Aerosol Air Qual. Res., 16, 1378–1389, doi: 10.4209/aaqr.2015.12.0699.Google Scholar
  54. Zheng, B., Q. Zhang, Y. Zhang, et al., 2015: Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys., 15, 2031–2049, doi: 10.5194/acp-15-2031-2015.CrossRefGoogle Scholar
  55. Zheng, G. J., F. K. Duan, H. Su, et al., 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983, doi: 10.5194/acp-15-2969-2015.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiyuan Chi
    • 1
  • Pengzhen He
    • 1
  • Zhuang Jiang
    • 1
  • Xiawei Yu
    • 1
  • Fange Yue
    • 1
  • Longquan Wang
    • 1
  • Bokun Li
    • 1
  • Hui Kang
    • 1
  • Cheng Liu
    • 1
    • 2
  • Zhouqing Xie
    • 1
    • 2
  1. 1.Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiChina

Personalised recommendations