Advertisement

Journal of Meteorological Research

, Volume 32, Issue 1, pp 26–37 | Cite as

Comparison of Submicron Particles at a Rural and an Urban Site in the North China Plain during the December 2016 Heavy Pollution Episodes

  • Xiaojing Shen
  • Junying Sun
  • Xiaoye Zhang
  • Yangmei Zhang
  • Yaqiang Wang
  • Kaiyan Tan
  • Peng Wang
  • Lu Zhang
  • Xuefei Qi
  • Haochi Che
  • Zhouxiang Zhang
  • Junting Zhong
  • Huarong Zhao
  • Sanxue Ren
Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Beijing-Tianjin-Hebei Area of China

Abstract

An extensive field experiment for measurement of physical and chemical properties of aerosols was conducted at an urban site in the Chinese Academy of Meteorological Sciences (CAMS) in Beijing and at a rural site in Gucheng (GC), Hebei Province in December 2016. This paper compares the number size distribution of submicron particle matter (PM1, diameter < 1 μm) between the two sites. The results show that the mean PM1 number concentration at GC was twice that at CAMS, and the mass concentration was three times the amount at CAMS. It is found that the accumulation mode (100–850 nm) particles constituted the largest fraction of PM1 at GC, which was significantly correlated with the local coal combustion, as confirmed by a significant relationship between the accumulation mode and the absorption coefficient of soot particles. The high PM1 concentration at GC prevented the occurrence of new particle formation (NPF) events, while eight such events were observed at CAMS. During the NPF events, the mass fraction of sulfate increased significantly, indicating that sulfate played an important role in NPF. The contribution of regional transport to PM1 mass concentration was approximately 50% at both sites, same as that of the local emission. However, during the red-alert period when emission control took place, the contribution of regional transport was notably higher.

Keywords

particle number size distribution new particle formation severe haze–fog events Beijing–Tianjin–Hebei area Jing–Jin–Ji region submicron particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was also supported by the CMA Innovation Team for Haze–Fog Observation and Forecasts.

References

  1. Birmili, W., L. Tomsche, A. Sonntag, et al., 2013: Variability of aerosol particles in the urban atmosphere of Dresden (Germany): Effects of spatial scale and particle size. Meteor. Z., 22, 195–211, doi: 10.1127/0941-2948/2013/0395.CrossRefGoogle Scholar
  2. Cheng, Y. F., H. Su, D. Rose, et al., 2012: Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization. Atmos. Chem. Phys., 12, 4477–4491, doi: 10.5194/acp-12-4477-2012.CrossRefGoogle Scholar
  3. Cohen, J. B., 2014: Quantifying the occurrence and magnitude of the Southeast Asian fire climatology. Environ. Res. Lett., 9, 114018, doi: 10.1088/1748-9326/9/11/114018.CrossRefGoogle Scholar
  4. Cohen, J. B., and C. Wang, 2014: Estimating global black carbon emissions using a top-down Kalman filter approach. J. Geophys. Res., 119, 307–323, doi: 10.1002/2013JD019912.Google Scholar
  5. Dal Maso, M., M. Kulmala, I. Riipinen, et al., 2005: Formation and growth of fresh atmospheric aerosol: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ. Res., 10, 323–336.Google Scholar
  6. Fuks, N. A., and A. G. Sutugin, 1970: Highly Dispersed Aerosols. Ann Arbor Science Publishers, Ann Arbor, London, 47–60.Google Scholar
  7. Gunthe, S. S., D. Rose, H. Su, et al., 2011: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys., 11, 11023–11039, doi: 10.5194/acp-11-11023-2011.CrossRefGoogle Scholar
  8. Guo, S., M. Hu, M. L. Zamora, et al., 2014: Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA, 111, 17373–17378, doi: 10.1073/pnas.1419604111.CrossRefGoogle Scholar
  9. Hussein, T., M. Dal Maso, T. Petäjä, et al., 2005: Evaluation of an automatic algorithm for fitting the particle number size distributions. Boreal Environ. Res., 10, 337–355.Google Scholar
  10. Jia, Y. T., K. A. Rahn, K. B. He, et al., 2008: A novel technique for quantifying the regional component of urban aerosol solely from its sawtooth cycles. J. Geophys. Res., 113, D21309, doi: 10.1029/2008JD010389.CrossRefGoogle Scholar
  11. Kivekäs, N., J. Sun, M. Zhan, et al., 2009: Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China. Atmos. Chem. Phys., 9, 5461–5474, doi: 10.5194/acp-9-5461-2009.CrossRefGoogle Scholar
  12. Kulmala, M., M. Dal Maso, J. M. Mäkelä, et al., 2001: On the formation, growth and composition of nucleation mode particles. Tellus B, 53, 479–490, doi: 10.3402/tellusb.v53i4.16622.CrossRefGoogle Scholar
  13. Kulmala, M., H. Vehkamäki, T. Petäjä, et al., 2004: Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aeros. Sci., 35, 143–176, doi: 10.1016/j.jaerosci.2003.10.003.CrossRefGoogle Scholar
  14. Kulmala, M., T. Petäjä, T. Nieminen, et al., 2012: Measurement of the nucleation of atmospheric aerosol particles. Nat. Protoc., 7, 1651–1667, doi: 10.1038/nprot.2012.091.CrossRefGoogle Scholar
  15. Kumar, P., L. Morawska, W. Birmili, et al., 2014: Ultrafine particles in cities. Environ. Int., 66, 1–10, doi: 10.1016/j.envint.2014.01.013.CrossRefGoogle Scholar
  16. Li, K., H. Liao, Y. H. Mao, et al., 2016: Source sector and region contributions to concentration and direct radiative forcing of black carbon in China. Atmos. Environ., 124, 351–366, doi: 10.1016/j.atmosenv.2015.06.014.CrossRefGoogle Scholar
  17. Ma, N., and W. Birmili, 2015: Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci. Total Environ., 512–513, 154–166, doi: 10.1016/j.scitotenv.2015.01.009.Google Scholar
  18. Müller, T., J. S. Henzing, G. de Leeuw, et al., 2011: Characterization and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops. Atmos. Meas. Tech., 4, 245–268, doi: 10.5194/amt-4-245-2011.CrossRefGoogle Scholar
  19. Peng, J. F., M. Hu, Z. B. Wang, et al., 2014: Submicron aerosols at thirteen diversified sites in China: Size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmos. Chem. Phys., 14, 10249–10265, doi: 10.5194/acp-14-10249-2014.CrossRefGoogle Scholar
  20. Pfeifer, S., W. Birmili, A. Schladitz, et al., 2014: A fast and easyto-implement inversion algorithm for mobility particle size spectrometers considering particle number size distribution information outside of the detection range. Atmos. Meas. Tech., 7, 95–105, doi: 10.5194/amt-7-95-2014.CrossRefGoogle Scholar
  21. Qi, X. M., A. J. Ding, W. Nie, et al., 2015: Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmos. Chem. Phys., 15, 12445–12464, doi: 10.5194/acp-15-12445-2015.CrossRefGoogle Scholar
  22. Shen, X. J., J. Y. Sun, Y. M. Zhang, et al., 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmos. Chem. Phys., 11, 1565–1580, doi: 10.5194/acp-11-1565-2011.CrossRefGoogle Scholar
  23. Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2016a: Particle climatology in central East China retrieved from measurements in planetary boundary layer and in free troposphere at a 1500-mhigh mountaintop site. Aerosol Air Qual. Res., 16, 689–701, doi: 10.4209/aaqr.2015.02.0070.CrossRefGoogle Scholar
  24. Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2016b: Key features of new particle formation events at background sites in China and their influence on cloud condensation nuclei. Front. Environ. Sci. Eng., 10, 5, doi: 10.1007/s11783-016-0833-2.CrossRefGoogle Scholar
  25. Sun, J. Y., Q. Zhang, M. R. Canagaratna, et al., 2010: Highly timeand size-resolved characterization of submicron aerosol particles in Beijing using an aerodyne aerosol mass spectrometer. Atmos. Environ., 44, 131–140, doi: 10.1016/j.atmosenv.2009.03.020.CrossRefGoogle Scholar
  26. Vu, T. V., J. M. Delgado-Saborit, and R. M. Harrison, 2015: Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos. Environ., 122, 114–132, doi: 10.1016/j.atmosenv.2015.09.027.CrossRefGoogle Scholar
  27. Wang, Y. Q., X. Y. Zhang, and R. R. Draxler, 2009: TrajStat: GISbased software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw., 24, 938–939, doi: 10.1016/j.envsoft.2009.01.004.CrossRefGoogle Scholar
  28. Wang, Z. B., M. Hu, D. L. Yue, et al., 2011: Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmos. Chem. Phys., 11, 12663–12671, doi: 10.5194/acp-11-12663-2011.CrossRefGoogle Scholar
  29. Wang, Z. B., M. Hu, J. Y. Sun, et al., 2013: Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmos. Chem. Phys., 13, 12495–12506, doi: 10.5194/acp-13-12495-2013.CrossRefGoogle Scholar
  30. Wang, H. L., B. Zhu, L. J. Shen, et al., 2014: Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation. Atmos. Res., 150, 42–56, doi: 10.1016/j.atmosres.2014.07.020.Google Scholar
  31. Wang, Y. S., L. Yao, L. L. Wang, et al., 2014: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci., 57, 14–25, doi: 10.1007/s11430-013-4773-4.CrossRefGoogle Scholar
  32. Wang, Z. F., J. Li, Z. Wang, et al., 2014: Modeling study of regional severe hazes over mid–eastern China in January 2013 and its implications on pollution prevention and control. Sci. China Earth Sci., 57, 3–13, doi: 10.1007/s11430-013-4793-0.CrossRefGoogle Scholar
  33. Wiedensohler, A., W. Birmili, A. Nowak, et al., 2012: Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech., 5, 657–685, doi: 10.5194/amt-5-657-2012.CrossRefGoogle Scholar
  34. Wu, Z. J., M. Hu, S. Liu, et al., 2007: New particle formation in Beijing, China: Statistical analysis of a 1-year data set. J. Geophys. Res., 112, D09209, doi: 10.1029/2006jd007406.Google Scholar
  35. Wu, Z. J., M. Hu, P. Lin, et al., 2008: Particle number size distribution in the urban atmosphere of Beijing, China. Atmos. Environ., 42, 7967–7980, doi: 10.1016/j.atmosenv.2008.06.022.CrossRefGoogle Scholar
  36. Yue, D. L., M. Hu, R. Y. Zhang, et al., 2011: Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmos. Environ., 45, 6070–6077, doi: 10.1016/j.atmosenv. 2011.07.037.CrossRefGoogle Scholar
  37. Zhang, R. H., Q. Li, and R. N. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 26–35, doi: 10.1007/s11430-013-4774-3.CrossRefGoogle Scholar
  38. Zhang, Y. M., Y. Q. Wang, X. Y. Zhang, et al., 2018: Chemical components, variation, and source identification of PM1 during heavy air pollution episodes in Beijing. J. Meteor. Res., 32, 1–13, doi: 10.1007/s13351-018-7051-8.CrossRefGoogle Scholar
  39. Zheng, G. J., F. K. Duan, H. Su, et al., 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983, doi: 10.5194/acp-15-2969-2015.CrossRefGoogle Scholar
  40. Zhong, J. T., X. Y. Zhang, Y. Q. Wang, et al., 2017: Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J. Meteor. Res., 31, 809–819, doi: 10.1007/s13351-017-7088-0.CrossRefGoogle Scholar
  41. Zhou, S. Z., P. K., Davy, X. M. Wang, et al., 2016: High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of southern China: Dynamic variations and effects of meteorology. Sci. Total Environ., 572, 634–648, doi: 10.1016/j.scitotenv.2016.05.194.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojing Shen
    • 1
  • Junying Sun
    • 1
  • Xiaoye Zhang
    • 1
  • Yangmei Zhang
    • 1
  • Yaqiang Wang
    • 1
  • Kaiyan Tan
    • 2
  • Peng Wang
    • 3
  • Lu Zhang
    • 1
  • Xuefei Qi
    • 1
  • Haochi Che
    • 1
  • Zhouxiang Zhang
    • 1
  • Junting Zhong
    • 1
  • Huarong Zhao
    • 2
  • Sanxue Ren
    • 2
  1. 1.State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Integrated Ecological–Meteorological Observation and Experimental StationChinese Academy of Meteorological SciencesBeijingChina
  3. 3.Longfengshan Atmospheric Background Regional StationHeilongjiang Provincial Meteorological BureauWuchangChina

Personalised recommendations