Advertisement

Journal of Meteorological Research

, Volume 32, Issue 1, pp 113–123 | Cite as

Dependence of Tropical Cyclone Intensification on the Latitude under Vertical Shear

  • Mingyu Bi
  • Xuyang Ge
  • Tim Li
Regular Articles
  • 45 Downloads

Abstract

The sensitivity of tropical cyclone (TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand, the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated.

Keywords

tropical cyclone intensification vertical shear Coriolis parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bister, M., 2001: Effect of peripheral convection on tropical cyclone formation. J. Atmos. Sci., 58, 3463–3476, doi: 10.1175/1520-0469(2001)058<3463:EOPCOT>2.0.CO;2.CrossRefGoogle Scholar
  2. Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi: 10.1029/2001JD000776.CrossRefGoogle Scholar
  3. DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088, doi: 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.CrossRefGoogle Scholar
  4. DeMaria, M., and J. D. Pickle, 1988: A simplified system of equations for simulation of tropical cyclones. J. Atmos. Sci., 45, 1542–1554, doi: 10.1175/1520-0469(1988)045<1542:ASSOEF>2.0.CO;2.CrossRefGoogle Scholar
  5. DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233, doi: 10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.CrossRefGoogle Scholar
  6. Fang, J., and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 3327–3346, doi: 10.1175/MWR-D-10-05021.1.CrossRefGoogle Scholar
  7. Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269, doi: 10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.CrossRefGoogle Scholar
  8. Ge, X. Y., T. Li, and X. Q. Zhou, 2007: Tropical cyclone energy dispersion under vertical shears. Geophys. Res. Lett., 34, L23807, doi: 10.1029/2007GL031867.Google Scholar
  9. Ge, X. Y., T. Li, Y. Q. Wang, et al., 2008: Tropical cyclone energy dispersion in a three-dimensional primitive equation model: Upper-tropospheric influence. J. Atmos. Sci., 65, 2272–2289, doi: 10.1175/2007jas2431.1.CrossRefGoogle Scholar
  10. Ge, X. Y., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859–3875, doi: 10.1175/jas-d-13-066.1.CrossRefGoogle Scholar
  11. Ge, X. Y., W. Xu, and S. W. Zhou, 2015: Sensitivity of tropical cyclone intensification to inner-core structure. Adv. Atmos. Sci., 32, 1407–1418, doi: 10.1007/s00376-015-4286-5.CrossRefGoogle Scholar
  12. Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700, doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.CrossRefGoogle Scholar
  13. Gray, W. M., 1979: Tropical cyclone intensity determination through upper-tropospheric aircraft reconnaissance. Bull. Amer. Meteor. Soc., 60, 1069–1074, doi: 10.1175/1520-0477(1979)060<1069:TCIDTU>2.0.CO;2.CrossRefGoogle Scholar
  14. Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559–1573, doi: 10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.CrossRefGoogle Scholar
  15. Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232, doi: 10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.CrossRefGoogle Scholar
  16. Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541, doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.CrossRefGoogle Scholar
  17. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi: 10.1002/qj.49711147002.CrossRefGoogle Scholar
  18. Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821–851, doi: 10.1002/qj.49712152406.Google Scholar
  19. Li, T., X. Y. Ge, M. Peng, et al., 2012: Dependence of tropical cyclone intensification on the Coriolis parameter. Trop. Cyclone Res. Rev., 1, 242–253, doi: 10.6057/2012TCRR02.04.Google Scholar
  20. McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132–1151, doi: 10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.Google Scholar
  21. Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918–938, doi: 10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.Google Scholar
  22. Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 1035–1054, doi: 10.1002/qj.977.CrossRefGoogle Scholar
  23. Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188, doi: 10.5194/acp-10-3163-2010.CrossRefGoogle Scholar
  24. Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697, doi: 10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.CrossRefGoogle Scholar
  25. Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394, doi: 10.1175/1520-0469(1982)039<0378:TROBHT7gt;2.0.CO;2.CrossRefGoogle Scholar
  26. Smith, R. K., G. Kilroy, and M. T. Montgomery, 2015: Why do model tropical cyclones intensify more rapidly at low latitudes? J. Atmos. Sci., 72, 1783–1804, doi: 10.1175/jas-d-14-0044.1.CrossRefGoogle Scholar
  27. Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817–1830, doi: 10.1175/2010JAS3318.1.CrossRefGoogle Scholar
  28. Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 1901–1912, doi: 10.1175/BAMS-D-11-00165.1.CrossRefGoogle Scholar
  29. Wang, Y. Q., 1995: An inverse balance equation in sigma coordinates for model initialization. Mon. Wea. Rev., 123, 482–488, doi: 10.1175/1520-0493(1995)123<0482:AIBEIS>2.0.CO;2.CrossRefGoogle Scholar
  30. Wang, Y. Q., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 1370–1394, doi: 10.1175/1520-0493 (2001)129<1370:AESOTC>2.0.CO;2.Google Scholar
  31. Zhang, D.-L., and C. Q. Kieu, 2006: Potential vorticity diagnosis of a simulated hurricane. Part II: Quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci., 63, 2898–2914, doi: 10.1175/JAS3790.1.Google Scholar
  32. Zhang, F. Q., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975–983, doi: 10.1175/JAS-D-12-0133.1.CrossRefGoogle Scholar
  33. Zhou, W. Y., 2015: The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state. J. Adv. Model. Earth Syst., 7, 1872–1884, doi: 10.1002/2015ms000543.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key laboratory of Meteorological DisasterNanjing University of Information Science &TechnologyNanjingChina
  2. 2.International Pacific Research Center/Department of Atmospheric SciencesUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations