Advertisement

Journal of Meteorological Research

, Volume 32, Issue 2, pp 302–312 | Cite as

Characteristics of Boundary Layer Structure during a Persistent Haze Event in the Central Liaoning City Cluster, Northeast China

  • Xiaolan Li
  • Yangfeng Wang
  • Lidu Shen
  • Hongsheng Zhang
  • Hujia Zhao
  • Yunhai Zhang
  • Yanjun Ma
Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Beijing-Tianjin-Hebei Area of China

Abstract

The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter (PM) concentration and the meteorological data within the atmospheric boundary layer (ABL). During the observational period, the maximum hourly mean PM2.5 and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m–3 and from 378 to 442 μg m–3, respectively, and the lowest hourly mean atmospheric visibility (VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed (WS) within the ABL (< 2 km) decreased significantly and WS at 10-m height mostly remained below 2 m s–1 during the hazy episodes, which was favorable for the accumulation of air pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time (LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height (ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM2.5 in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event. The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.

Key words

haze event thermal inversion layer atmospheric boundary layer Northeast China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, C. K., and X. H. Yao, 2008: Air pollution in mega cities in China. Atmos. Environ., 42, 1–42, doi: 10.1016/j.atmosenv.2007.09.003.CrossRefGoogle Scholar
  2. Che, H., X. Xia, J. Zhu, et al., 2014: Column aerosol optical properties and aerosol radiative forcing during a serious haze–fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys., 14, 2125–2138, doi: 10.5194/acp-14-2125-2014.CrossRefGoogle Scholar
  3. Che, H. Z., H. J. Zhao, X. G. Xia, et al., 2015: Fine mode aerosol optical properties related to cloud and fog processing over a cluster of cities in Northeast China. Aerosol Air Qual. Res., 15, 2065–2081, doi: 10.4209/aaqr.2014.12.0325.Google Scholar
  4. Chen, J., C. S. Zhao, N. Ma, et al., 2012: A parameterization of low visibilities for hazy days in the North China Plain. Atmos. Chem. Phys., 12, 4935–4950, doi: 10.5194/acp-12-4935-2012.CrossRefGoogle Scholar
  5. Chen, W. W., D. Q. Tong, M. Dan, et al., 2017: Typical atmo-spheric haze during crop harvest season in northeastern China: A case in the Changchun region. J. Environ. Sci., 54, 101–113, doi: 10.1016/j.jes.2016.03.031.CrossRefGoogle Scholar
  6. Chen, Z. H., S. Y. Cheng, J. B. Li, et al., 2008: Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China. Atmos. Environ., 42, 6078–6087, doi: 10.1016/j.atmosenv.2008.03.043.CrossRefGoogle Scholar
  7. Cui, Y., C. Y. Zhao, T. Wang, et al., 2015: Temporal and spatial characteristics of haze days with different intensities and the climatic factors during 1961–2013 in Liaoning Province. Acta Scientiae Circumstantiae, 35, 1629–1637, doi: 10.13671/j.hjkxxb.2014.0917. (in Chinese)Google Scholar
  8. Draxler, R. R., and G. D. Rolph, 2003: Hybrid Single-Particle Lagrangian Integrated Trajectory Model access via NOAA ARL READY. NOAA Air Resources Laboratory, Silver Spring, MD. http://www.ready.noaa.gov/HYSPLIT.php. Google Scholar
  9. Fu, G. Q., W. Y. Xu, R. F. Yang, et al., 2014: The distribution and trends of fog and haze in the North China Plain over the past 30 years. Atmos. Chem. Phys., 14, 11949–11958, doi: 10.5194/acp-14-11949-2014.CrossRefGoogle Scholar
  10. Fu, Q. Y., G. S. Zhang, J. Wang, et al., 2008: Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ., 42, 2023–2036, doi: 10.1016/j.atmosenv.2007.12.002.CrossRefGoogle Scholar
  11. Hu, X. M., Z. Q. Ma, W. L. Lin, et al., 2014: Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study. Sci. Total Environ., 499, 228–237, doi: 10.1016/j.scitotenv.2014.08.053.CrossRefGoogle Scholar
  12. Hu, X. M., X. L. Li, M. Xue, et al., 2016: The formation of barrier winds east of the Loess Plateau and their effects on dispersion conditions in the North China Plains. Bound.-Layer Meteor., 161, 145–163, doi: 10.1007/s10546-016-0159-4.CrossRefGoogle Scholar
  13. Ji, D. S., Y. S. Wang, L. L. Wang, et al., 2012: Analysis of heavy pollution episodes in selected cities of northern China. Atmos. Environ., 50, 338–348, doi: 10.1016/j.atmosenv.2011.11.053.CrossRefGoogle Scholar
  14. Kim, S. W., S. C. Yoon, J. G. Won, et al., 2007: Ground-based remote sensing measurements of aerosol and ozone in an urban area: A case study of mixing height evolution and its effect on ground-level ozone concentrations. Atmos. Environ., 41, 7069–7081, doi: 10.1016/j.atmosenv.2007.04.063.CrossRefGoogle Scholar
  15. Leng, C., Q. Zhang, D. Zhang, et al., 2014: Variations of cloud condensation nuclei (CCN) and aerosol activity during fog–haze episode: A case study from Shanghai. Atmos. Chem. Phys., 14, 12499–12512, doi: 10.5194/acp-14-12499-2014.CrossRefGoogle Scholar
  16. Leng, C. P., J. Y. Duan, C. Xu, et al., 2016: Insights into a historic severe haze event in Shanghai: Synoptic situation, boundary layer and pollutants. Atmos. Chem. Phys., 16, 9221–9234, doi: 10.5194/acp-16-9221-2016.CrossRefGoogle Scholar
  17. Li, M. N., S. J. Niu, S. T. Zhang, et al., 2015: Comparative study of turbulent characteristics between the fog day and haze day in Nanjing. Acta Meteor. Sinica, 73, 593–608, doi: 10.11676/qxxb2015.032. (in Chinese)Google Scholar
  18. Liao, X. N., X. L. Zhang, Y. C. Wang, et al., 2014: Comparative analysis on meteorological condition for persistent haze cases in summer and winter in Beijing. Environ. Sci., 35, 2031–2044, doi: 10.13227/j.hjkx.2014.06.001. (in Chinese)Google Scholar
  19. Liu, J., S. J. Fan, D. Wu, et al., 2015: Boundary layer characteristics of typical haze process in the Pearl River Delta region. China Environ. Sci., 35, 1664–1674, doi: 10.3969/j.issn.1000-6923.2015.06.008. (in Chinese)Google Scholar
  20. Liu, N. W., Y. J. Ma, X. M. Liu, et al., 2011: Observations on haze and fog in Shenyang area. Acta Scientiae Circumstantiae, 31, 1064–1069. (in Chinese)Google Scholar
  21. Liu, S. H., Z. X. Liu, J. Li, et al., 2009: Numerical simulation for the coupling effect of local atmospheric circulations over the area of Beijing, Tianjin, and Hebei Province. Sci. China Ser. D Earth Sci., 52, 382–392, doi: 10.1007/s11430-009-0030-2.CrossRefGoogle Scholar
  22. Liu, X. G., Y. H. Zhang, Y. F. Cheng, et al., 2012: Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign. Atmos. Environ., 60, 59–67, doi: 10.1016/j.atmosenv.2012.06.016.CrossRefGoogle Scholar
  23. Lu, C. S., S. J. Niu, P. Yue, et al., 2011: Observational research on boundary layer structure during high incidence period of winter fog in Nanjing. Trans. Atmos. Sci., 34, 58–65. (in Chinese)Google Scholar
  24. Ma, Y. J., N. W. Liu, Y. F. Wang, et al., 2011: Thedistribution characteristics of fine particles and their impact on air quality in Shenyang and surrounding areas. Acta Scientiae Circumstantiae, 31, 1168–1174. (in Chinese)Google Scholar
  25. Ma, Y. J., N. W. Liu, Y. Hong, et al., 2012: The impacts on various particle sizes and the air quality caused by a dust weather process in spring 2011 in Liaoning. Acta Scientiae Circumstantiae, 32, 1160–1167. (in Chinese)Google Scholar
  26. Miao, Y. C., S. H. Liu, Y. J. Zheng, et al., 2015: Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing–Tianjin–Hebei, China. J. Environ. Sci., 30, 9–20, doi: 10.1016/j.jes.2014.08.025.CrossRefGoogle Scholar
  27. Miao, Y. C., J. P. Guo., S. H. Liu, et al., 2017: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmos. Chem. Phys., 17, 3097–3110, doi: 10.5194/acp-17-3097-2017.CrossRefGoogle Scholar
  28. Nielsen-Gammon, J. W., C. L. Powell, M. J. Mahoney, et al., 2008: Multisensor estimation of mixing heights over a coastal city. J. Appl. Meteor. Climatol., 47, 27–43, doi: 10.1175/2007JAMC1503.1.CrossRefGoogle Scholar
  29. Peng, H. Q., D. Y. Liu, B. Zhou, et al., 2016: Boundary-layer characteristics of persistent regional haze events and heavy haze days in eastern China. Adv. Meteor., 6950154, doi: 10.1155/2016/6950154.Google Scholar
  30. Quan, J. N., Y. Gao, Q. Zhang, et al., 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 34–40, doi: 10.1016/j.partic.2012.04.005.CrossRefGoogle Scholar
  31. Shao, M., X. Y. Tang, Y. H. Zhang, et al., 2006: City clusters in China: Air and surface water pollution. Frontiers in Ecology and the Environment, 4, 353–361, doi: 10.1890/1540-9295(2006)004[0353:CCICAA]2.0.CO;2.CrossRefGoogle Scholar
  32. Shen, X. J., J. Y. Sun, X. Y. Zhang, et al, 2015: Characterization of submicron aerosols and effect on visibility during a severe haze–fog episode in Yangtze River Delta, China. Atmos. Environ., 120, 307–316, doi: 10.1016/j.atmosenv.2015.09.011.CrossRefGoogle Scholar
  33. Stock, M., Y. F. Cheng, W. Birmili, et al., 2011: Hygroscopic properties of atmospheric aerosol particles over the eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions. Atmos. Chem. Phys., 11, 4251–4271, doi: 10.5194/acp-11-4251-2011.CrossRefGoogle Scholar
  34. Sun, Y., T. Song, G. Q. Tang, et al., 2013: PM2.5 and boundarylayer structure during summer haze in Beijing. Atmos. Environ., 74, 413–421, doi: 10.1016/j.atmosenv.2013.03.011.CrossRefGoogle Scholar
  35. Tang, G. Q., J. Q. Zhang, X. W. Zhu, et al., 2016: Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys., 16, 2459–2475, doi: 10.5194/acp-16-2459-2016.CrossRefGoogle Scholar
  36. Tang, G. Q., P. S. Zhao, Y. H. Wang, et al., 2017: Mortality and air pollution in Beijing: The long-term relationship. Atmos. Environ., 150, 238–243, doi: 10.1016/j.atmosenv.2016.11.045.CrossRefGoogle Scholar
  37. Wang, H., M. Xue, X. Y. Zhang, et al., 2015a: Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing–Jin–Ji (China) and its nearby surrounding region. Part 1: Aerosol distributions and meteorological features. Atmos. Chem. Phys., 15, 3257–3275, doi: 10.5194/acp-15-3257-2015.Google Scholar
  38. Wang, H., G. Y. Shi, X. Y. Zhang, et al., 2015b: Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing–Jin–Ji and its near surrounding region. Part 2: Aerosols’ radiative feedback effects. Atmos. Chem. Phys., 15, 3277–3287, doi: 10.5194/acp-15-3277-2015.Google Scholar
  39. Wang, K., H. S. Zhang, Q. Wang, et al., 2006: Study on the structure and evolvement of atmospheric boundary layer of frontal fogs in spring and winter at southern suburb of Beijing. Acta Scientiarum Naturalium Universitatis Pekinensis, 42, 55–60, doi: 10.3321/j.issn:0479-8023.2006.01.010. (in Chinese)Google Scholar
  40. Wang, L. L., N. Zhang, Z. R. Liu, et al., 2014a: The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing–Tianjin–Hebei region during January 2013. Adv. Meteor., 2014, 685971, doi: 10.1155/2014/685971.Google Scholar
  41. Wang, P., H. Z. Che, X. C. Zhang, et al., 2010: Aerosol optical properties of regional background atmosphere in Northeast China. Atmos. Environ., 44, 4404–4412, doi: 10.1016/j.atmosenv.2010.07.043.CrossRefGoogle Scholar
  42. Wang, S., T. T. Liao, L. L. Wang, et al., 2016: Process analysis of characteristics of the boundary layer during a heavy haze pollution episode in an inland megacity, China. J. Environ. Sci., 40, 138–144, doi: 10.1016/j.jes.2015.12.008.CrossRefGoogle Scholar
  43. Wang, Y. Q., X. Y. Zhang, J. Y. Sun, et al., 2015c: Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China. Atmos. Chem. Phys., 15, 13585–13598, doi: 10.5194/acp-15-13585-2015.CrossRefGoogle Scholar
  44. Wang, Y. S., L. Yao, L. L. Wang, et al., 2014b: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci., 57, 14–25, doi: 10.1007/s11430-013-4773-4.CrossRefGoogle Scholar
  45. Wu, D., X. Y. Bi, X. J. Deng, et al., 2007: Effect of atmospheric haze on the deterioration of visibility over the Pearl River Delta. Acta. Meteor. Sinica, 21, 215–223.Google Scholar
  46. Wu, Z. L., A. X. Liu, C. C. Zhang, et al., 2009: Vertical distribution feature of PM2.5 and effect of boundary layer in Tianjin. Urban Environment & Urban Ecology, 22, 24–29. (in Chinese)Google Scholar
  47. Yang, J., L. Wang, R. Y. Liu, et al., 2010: The boundary layer structure and the evolution mechanisms of a deep dense fog event. Acta Meteor. Sinica, 68, 998–1006, doi: 10.11676/qxxb2010.094. (in Chinese)Google Scholar
  48. Ye, X. X., Y. Song, X. H. Cai, et al., 2016: Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013. Atmos. Environ., 124, 129–145, doi: 10.1016/j.atmosenv.2015.06.011.CrossRefGoogle Scholar
  49. Zhang, R. H., Q. Li, and R. N. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 26–35, doi: 10.1007/s11430-013-4774-3.CrossRefGoogle Scholar
  50. Zhang, Y. H., Y. J. Ma, N. W. Liu, et al., 2010a: Study on environmental characteristics of haze in Shenyang. Ecology and Environmental Sciences, 19, 2636–2641, doi: 10.3969/j.issn.1674-5906.2010.11.020. (in Chinese)Google Scholar
  51. Zhang, Y. H., H. B. Yang, X. D. Zou, 2010b: Test research on the characteristics of pollution boundary layer in the river outlet area of Grand Liao River. Meteor. Environ. Res., 1, 57–61.Google Scholar
  52. Zhao, H. J., H. Z. Che, X. Y. Zhang, et al., 2013a: Aerosol optical properties over urban and industrial region of Northeast China by using ground-based sun-photometer measurement. Atmos. Environ., 75, 270–278, doi: 10.1016/j.atmosenv.2013.04.048.CrossRefGoogle Scholar
  53. Zhao, H. J., H. Z. Che, X.Y. Zhang, et al., 2013b: Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res., 4, 427–434, doi: 10.5094/APR.2013.049.CrossRefGoogle Scholar
  54. Zheng, G. J., F. K. Duan, H. Su, et al, 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983, doi: 10.5194/acp-15-2969-2015.CrossRefGoogle Scholar
  55. Zhu, J. L., H. Liao, and J. P. Li, 2012: Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys. Res. Lett., 39, L09809, doi: 10.1029/2012GL051428.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolan Li
    • 1
  • Yangfeng Wang
    • 1
  • Lidu Shen
    • 2
  • Hongsheng Zhang
    • 3
  • Hujia Zhao
    • 1
  • Yunhai Zhang
    • 1
  • Yanjun Ma
    • 1
  1. 1.Institute of Atmospheric EnvironmentChina Meteorological AdministrationShenyangChina
  2. 2.Shenyang Regional Climatic CenterShenyangChina
  3. 3.Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic SciencesSchool of Physics, Peking UniversityBeijingChina

Personalised recommendations