Advertisement

Journal of Meteorological Research

, Volume 32, Issue 1, pp 1–13 | Cite as

Chemical Components, Variation, and Source Identification of PM1 during the Heavy Air Pollution Episodes in Beijing in December 2016

  • Yangmei Zhang
  • Yaqiang Wang
  • Xiaoye Zhang
  • Xiaojing Shen
  • Junying Sun
  • Lingyan Wu
  • Zhouxiang Zhang
  • Haochi Che
Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Beijing-Tianjin-Hebei Area of China

Abstract

Air pollution is a current global concern. The heavy air pollution episodes (HPEs) in Beijing in December 2016 severely influenced visibility and public health. This study aims to survey the chemical compositions, sources, and formation processes of the HPEs. An aerodyne quadruple aerosol mass spectrometer (Q-AMS) was utilized to measure the non-refractory PM1 (NR-PM1) mass concentration and size distributions of the main chemical components including organics, sulfate, nitrate, ammonium, and chloride in situ during 15–23 December 2016. The NR-PM1 mass concentration was found to increase from 6 to 188 μg m–3 within 5 days. During the most serious polluted episode, the PM1 mass concentration was about 2.6 times that during the first pollution stage and even 40 times that of the clean days. The formation rates of PM2.5 in the five pollution stages were 26, 22, 22, 32, and 67 μg m–3 h–1, respectively. Organics and nitrate occupied the largest proportion in the polluted episodes, whereas organics and sulfate dominated the submicron aerosol during the clean days. The size distribution of organics is always broader than those of other species, especially in the clean episodes. The peak sizes of the interested species grew gradually during different HPEs. Aqueous reaction might be important in forming sulfate and chloride, and nitrate was formed via oxidization and condensation processes. PMF (positive matrix factorization) analysis on AMS mass spectra was employed to separate the organics into different subtypes. Two types of secondary organic aerosol with different degrees of oxidation consisted of 43% of total organics. By contrast, primary organics from cooking, coal combustion, and traffic emissions comprised 57% of the organic aerosols during the HPEs.

Keywords

heavy pollution PM1 chemical species sources evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13351_2018_7051_MOESM1_ESM.pdf (3.1 mb)
Chemical Components, Variation, and Source Identification of PM1 during the Heavy Air Pollution Episodes in Beijing in December 2016

References

  1. Aiken, A. C., P. F. DeCarlo, J. H. Kroll, et al., 2008: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol., 42, 4478–4485, doi: 10.1021/es703009q.CrossRefGoogle Scholar
  2. Allan, J. D., M. R. Alfarra, K. N. Bower, et al., 2003: Quantitative sampling using an Aerodyne aerosol mass spectrometer. 2: Measurements of fine particulate chemical composition in two U.K. cities. J. Geophys. Res., 108, 4091, doi: 10.1029/2002JD002359.Google Scholar
  3. Canagaratna, M. R., J. T. Jayne, J. L. Jimenez, et al., 2007: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev., 26, 185–222, doi: 10.1002/mas.20115.CrossRefGoogle Scholar
  4. Canagaratna, M. R., T. B. Onasch, E. C. Wood, et al., 2010: Evolution of vehicle exhaust particles in the atmosphere. J. Air Waste Manage. Assoc., 60, 1192–1203, doi: 10.3155/1047-3289.60.10.1192.CrossRefGoogle Scholar
  5. Canagaratna, M. R., J. L. Jimenez, J. H. Kroll, et al., 2015: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibra-tion, and implications. Atmos. Chem. Phys., 15, 253–272, doi: 10.5194/acp-15-253-2015.CrossRefGoogle Scholar
  6. Chan, C. K., and X. H. Yao, 2008: Air pollution in mega cities in China. Atmos. Environ., 42, 1–42, doi: 10.1016/j.atmosenv.2007.09.003.CrossRefGoogle Scholar
  7. Chow, J. C., J. D. Bachmann, S. S. G. Wierman, et al., 2002: Visibility: Science and regulation. J. Air Waste Manage. Assoc., 52, 973–999, doi: 10.1080/10473289.2002.10470844.CrossRefGoogle Scholar
  8. He, L. Y., M. Hu, X. F. Huang, et al., 2004: Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos. Environ., 38, 6557–6564, doi: 10.1016/j.atmosenv.2004.08.034.CrossRefGoogle Scholar
  9. Holmes, N. S., 2007: A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications. Atmos. Environ., 41, 2183–2201, doi: 10.1016/j.atmosenv.2006.10.058.CrossRefGoogle Scholar
  10. Hu, W. W., M. Hu, B. Yuan, et al., 2013: Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmos. Chem. Phys., 13, 10809–10858, doi: 10.5194/acpd-13-10809-2013.CrossRefGoogle Scholar
  11. Huang, X. F., L. Y. He, M. Hu, et al., 2010: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmos. Chem. Phys., 10, 8933–8945, doi: 10.5194/acp-10-8933-2010.CrossRefGoogle Scholar
  12. Jayne, J. T., D. C. Leard, X. F. Zhang, et al., 2000: Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33, 49–70, doi: 10.1080/027868200410840.CrossRefGoogle Scholar
  13. Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, et al., 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 1525–1529, doi: 10.1126/science.1180353.CrossRefGoogle Scholar
  14. Kanakidou, M., J. H. Seinfeld, S. N. Pandis, et al., 2005: Organic aerosol and global climate modeling: A review. Atmos. Chem. Phys., 5, 1053–1123, doi: 10.5194/acp-5-1053-2005.CrossRefGoogle Scholar
  15. Kroll, J. H., and J. H. Seinfeld, 2008: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ., 42, 3593–3624, doi: 10.1016/j.atmosenv.2008.01.003.CrossRefGoogle Scholar
  16. Kulmala, M., H. Vehkamäki, T. Petäjä, et al., 2004: Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci., 35, 143–176, doi: 10.1016/j.jaerosci.2003.10.003.CrossRefGoogle Scholar
  17. Liang, C. S., F. K. Duan, K. B. He, et al., 2016: Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environ. Intl., 86, 150–170, doi: 10.1016/j.envint.2015.10.016.CrossRefGoogle Scholar
  18. Mohr, C., A. Huffman, M. J. Cubison, et al., 2009: Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations. Environ. Sci. Technol., 43, 2443–2449, doi: 10.1021/es8011518.CrossRefGoogle Scholar
  19. Ng, N. L., M. R. Canagaratna, J. L. Jimenez, et al., 2010: Realtime methods for estimating organic component mass concentrations from aerosol mass spectrometer data. Environ. Sci. Technol., 45, 910–916, doi: 10.1021/es102951k.CrossRefGoogle Scholar
  20. Ng, N. L., M. R. Canagaratna, J. L. Jimenez, et al., 2011: Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos. Chem. Phys., 11, 6465–6474, doi: 10.5194/acp-11-6465-2011.CrossRefGoogle Scholar
  21. Paatero, P., 1997: Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37, 23–35, doi: 10.1016/S0169-7439(96)00044-5.CrossRefGoogle Scholar
  22. Paatero, P., and U. Tapper, 1994: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126, doi: 10.1002/env.3170050203.CrossRefGoogle Scholar
  23. Shen, X., J. Y. Sun, Y. M. Zhang, et al., 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmos. Chem. Phys., 11, 1565–1580, doi: 10.5194/acp-11-1565-2011.CrossRefGoogle Scholar
  24. Shen, X. J., J. Y. Sun, X. Y., Zhang, et al., 2015: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China. Atmos. Environ., 120, 307–316, doi: 10.1016/j.atmosenv.2015.09.011.CrossRefGoogle Scholar
  25. Sun, J. Y., Q. Zhang, M. R. Canagaratna, et al., 2010: Highly timeand size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmos. Environ., 44, 131–140, doi: 10.1016/j.atmosenv.2009.03.020.CrossRefGoogle Scholar
  26. Sun, Y., Q. Zhang, A. M. Macdonald, et al., 2009: Size-resolved aerosol chemistry on Whistler Mountain, Canada with a highresolution aerosol mass spectrometer during INTEX-B. Atmos. Chem. Phys., 9, 3095–3111, doi: 10.5194/acp-9-3095-2009.CrossRefGoogle Scholar
  27. Sun, Y. L., Z. F. Wang, P. Q. Fu, et al., 2013: Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos. Chem. Phys., 13, 4577–4592, doi: 10.5194/acp-13-4577-2013.CrossRefGoogle Scholar
  28. Sun, Y. L., C. Chen, Y. J. Zhang, et al., 2016: Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Scientific Reports, 6, 27151, doi: 10.1038/srep27151.CrossRefGoogle Scholar
  29. Tan, J. H., J. C. Duan, F. H. Chai, et al., 2014: Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing. Atmos. Res., 139, 90–100, doi: 10.1016/j.atmosres.2014.01.007.CrossRefGoogle Scholar
  30. Tie, X. X., Q. Zhang, H. He, et al., 2015: A budget analysis of the formation of haze in Beijing. Atmos. Environ., 100, 25–36, doi: 10.1016/j.atmosenv.2014.10.038.CrossRefGoogle Scholar
  31. Tuch, T. M., A. Haudek, T. Müller, et al., 2009: Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites. Atmos. Meas. Tech. Discuss., 2, 1143–1160, doi: 10.5194/amtd-2-1143-2009.CrossRefGoogle Scholar
  32. Ulbrich, I. M., M. R. Canagaratna, Q. Zhang, et al., 2009: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmos. Chem. Phys., 9, 2891–2918, doi: 10.5194/acp-9-2891-2009.CrossRefGoogle Scholar
  33. Wang, G. H., R. Y. Zhang, M. E. Gomez, et al., 2016: Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA, 113, 13630–13635, doi: 10.1073/pnas.1616540113.CrossRefGoogle Scholar
  34. Wang, Y. S., L. Yao, L. L. Wang, et al., 2014: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci., 57, 14–25, doi: 10.1007/s11430-013-4773-4.CrossRefGoogle Scholar
  35. Wu, Z. J., M. Hu, S. Liu, et al., 2007: New particle formation in Beijing, China: Statistical analysis of a 1-year data set. J. Geophys. Res., 112, D09209, doi: 10.1029/2006JD007406.Google Scholar
  36. Xu, J. Z., J. S. Shi, Q. Zhang, et al., 2016: Wintertime organic and inorganic aerosols in Lanzhou, China: Sources, processes, and comparison with the results during summer. Atmos. Chem. Phys., 16, 14937–14957, doi: 10.5194/acp-16-14937-2016.CrossRefGoogle Scholar
  37. Yang, Y. R., X. G. Liu, Y. Qu, et al., 2015: Characteristics and formation mechanism of continuous extreme hazes in China: A case study in autumn of 2014 in the North China Plain. Atmos. Chem. Phys. Discuss., 15, 10987–11029, doi: 10.5194/acpd-15-10987-2015.CrossRefGoogle Scholar
  38. Yue, D. L., M. Hu, R. Y. Zhang, et al., 2010: The roles of sulfuric acid in new particle formation and growth in the mega city of Beijing. Atmos. Chem. Phys., 10, 4953–4960, doi: 10.5194/acp-10-4953-2010.CrossRefGoogle Scholar
  39. Zhang, J. K., Y. Sun, Z. R. Liu, et al., 2014: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos. Chem. Phys., 14, 2887–2903, doi: 10.5194/acp-14-2887-2014.CrossRefGoogle Scholar
  40. Zhang, Q., J. L. Jimenez, M. R. Canagaratna, et al., 2011: Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review. Anal. Bioanal. Chem., 401, 3045–3067, doi: 10.1007/s00216-011-5355-y.CrossRefGoogle Scholar
  41. Zhang, X. H., Y. M. Zhang, J. Y. Sun, et al., 2017: Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry. Environ. Pollut., 222, 567, doi: 10.1016/j.envpol.2016.11.012.CrossRefGoogle Scholar
  42. Zhang, X. Y., Y. Q. Wang, W. L. Lin, et al., 2009: Changes of atmospheric composition and optical properties over Beijing —2008 Olympic monitoring campaign. Bull. Amer. Meteor. Soc., 90, 1633–1651, doi: 10.1175/2009BAMS2804.1.CrossRefGoogle Scholar
  43. Zhang, Y. M., X. Y. Zhang, J. Y. Sun, et al., 2011: Characterization of new particle and secondary aerosol formation during summertime in Beijing, China. Tellus B, 63, 382–394, doi: 10.1111/j.1600-0889.2011.00533.x.CrossRefGoogle Scholar
  44. Zhang, Y. M., J. Y. Sun, X. Y. Zhang, et al., 2013: Seasonal characterization of components and size distributions for submicron aerosols in Beijing. Sci. China Earth Sci., 56, 890–900, doi: 10.1007/s11430-012-4515-z.CrossRefGoogle Scholar
  45. Zhang, Y. M., X. Y. Zhang, J. Y. Sun, et al., 2014: Chemical composition and mass size distribution of PM1 at an elevated site in central East China. Atmos. Chem. Phys., 14, 12237–12249, doi: 10.5194/acp-14-12237-2014.CrossRefGoogle Scholar
  46. Zhang, Y. W., X. Y. Zhang, Y. M. Zhang, et al., 2015: Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze–fog pollution. Sci. Total Environ., 538, 7–15, doi: 10.1016/j.scitotenv.2015.06.104.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yangmei Zhang
    • 1
  • Yaqiang Wang
    • 1
  • Xiaoye Zhang
    • 1
    • 2
  • Xiaojing Shen
    • 1
  • Junying Sun
    • 1
  • Lingyan Wu
    • 1
  • Zhouxiang Zhang
    • 1
    • 3
  • Haochi Che
    • 1
    • 3
  1. 1.State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  3. 3.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations