Advertisement

Journal of Meteorological Research

, Volume 32, Issue 2, pp 313–323 | Cite as

Comparison of Two Air Pollution Episodes over Northeast China in Winter 2016/17 Using Ground-Based Lidar

  • Yanjun Ma
  • Hujia Zhao
  • Yunsheng Dong
  • Huizheng Che
  • Xiaoxiao Li
  • Ye Hong
  • Xiaolan Li
  • Hongbin Yang
  • Yuche Liu
  • Yangfeng Wang
  • Ningwei Liu
  • Cuiyan Sun
Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Beijing-Tianjin-Hebei Area of China

Abstract

This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19–22 (E1) and 25–26 (E2) December 2016 in Northeast China. The visibility, particulate matter (PM) mass concentration, and surface meteorological observations were examined, together with the planetary boundary layer (PBL) properties and vertical profiles of aerosol extinction coefficient and volume depolarization ratio that were measured by a ground-based lidar in Shenyang of Liaoning Province, China during December 2016–January 2017. Results suggest that the low PBL height led to poor pollution dilution in E1, while the high PBL accompanied by low visibility in E2 might have been due to cross-regional and vertical air transmission. The PM mass concentration decreased as the PBL height increased in E1 while these two variables were positively correlated in E2. The enhanced winds in E2 diffused the pollutants and contributed largely to the aerosol transport. Strong temperature inversion in E1 resulted in increased PM2.5 and PM10 concentrations, and the winds in E2 favoured the southwesterly transport of aerosols from the North China Plain into the region surrounding Shenyang. The large extinction coefficient was partially attributed to the local pollution under the low PBL with high ground-surface PM mass concentrations in E1, whereas the cross-regional transport of aerosols within a high PBL and the low PM mass concentration near the ground in E2 were associated with severe aerosol extinction at high altitudes. These results may facilitate better understanding of the vertical distribution of aerosol properties during winter pollution events in Northeast China.

Key words

aerosol pollution ground-based lidar Northeast China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansmann, A., R. Engelmann, D. Althausen, et al., 2005: High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer. Geophys. Res. Lett., 32, L13815, doi: 10.1029/2005GL023094.CrossRefGoogle Scholar
  2. Chan, Y. C., R. W. Simpson, G. H. Mctainsh, et al., 1999: Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmos. Environ., 33, 3237–3250, doi: 10.1016/S1352-2310(99)00091-6.CrossRefGoogle Scholar
  3. Che, H. Z., X. G. Xia, J. Zhu, et al., 2015: Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environ. Sci. Pollut. Res., 22, 1043–1053, doi: 10.1007/s11356-014-3415-5.CrossRefGoogle Scholar
  4. Cheng, Z., S. X. Wang, J. K. Jiang, et al., 2013: Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environ. Pollut., 182, 101–110, doi: 10.1016/j.envpol.2013.06.043.CrossRefGoogle Scholar
  5. Cottle, P., K. Strawbridge, and I. McKendry, 2014: Long-range transport of Siberian wildfire smoke to British Columbia: Lidar observations and air quality impacts. Atmos. Environ., 90, 71–77, doi: 10.1016/j.atmosenv.2014.03.005.CrossRefGoogle Scholar
  6. Deng, J. J., T. J. Wang, Z. Q. Jiang, et al., 2011: Characterization of visibility and its affecting factors over Nanjing, China. Atmos. Res., 101, 681–691, doi: 10.1016/j.atmosres.2011.04.016.CrossRefGoogle Scholar
  7. Elias, T., M. Haeffelin, P. Drobinski, et al., 2009: Particulate contribution to extinction of visible radiation: Pollution, haze, and fog. Atmos. Res., 92, 443–454, doi: 10.1016/j.atmosres.2009.01.006.CrossRefGoogle Scholar
  8. Emeis, S., R. Forkel, W. Junkermann, et al., 2011: Measurement and simulation of the 16/17 April 2010 Eyjafjallajökull volcanic ash layer dispersion in the northern Alpine region. Atmos. Chem. Phys., 11, 2689–2701, doi: 10.5194/acp-11-2689-2011.CrossRefGoogle Scholar
  9. Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652–653, doi: 10.1364/AO.23.000652.CrossRefGoogle Scholar
  10. Gao, Y., M. Zhang, Z. Liu, et al., 2015: Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain. Atmos. Chem. Phys., 15, 4279–4295, doi: 10.5194/acp-15-4279-2015.CrossRefGoogle Scholar
  11. Guinot, B., J.-C. Roger, H. Cachier, et al., 2006: Impact of vertical atmospheric structure on Beijing aerosol distribution. Atmos. Environ., 40, 5167–5180, doi: 10.1016/j.atmosenv.2006.03.051.CrossRefGoogle Scholar
  12. Hänel, A., H. Baars, D. Althausen, et al., 2012: One-year aerosol profiling with EUCAARI Raman lidar at Shangdianzi GAW station: Beijing plume and seasonal variations. J. Geophys. Res., 117, D13201, doi: 10.1029/2012JD017577.CrossRefGoogle Scholar
  13. He, G. X., C. W. F. Yu, C. Lu, et al., 2013: The influence of synoptic pattern and atmospheric boundary layer on PM10 and urban heat island. Indoor Built Environ., 22, 796–807, doi: 10.1177/1420326X13503576.CrossRefGoogle Scholar
  14. Hu, X. M., Z. Q. Ma, W. L. Lin, et al., 2014: Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study. Sci. Total Environ., 499, 228–237, doi: 10.1016/j.scitotenv.2014.08.053.CrossRefGoogle Scholar
  15. Ji, D. S., L. Li, Y. S. Wang, et al., 2014: The heaviest particulate air-pollution episodes that occurred in northern China in January 2013: Insights gained from observation. Atmos. Environ., 92, 546–556, doi: 10.1016/j.atmosenv.2014.04.048.CrossRefGoogle Scholar
  16. Jiang, C., H. Wang, T. Zhao, et al., 2015: Modeling study of PM2.5 pollutant transport across cities in China’s Jing–Jin–Ji region during a severe haze episode in December 2013. Atmos. Chem. Phys., 15, 5803–5814, doi: 10.5194/acpd-15-3745-2015.CrossRefGoogle Scholar
  17. Kim, Y. J., K. W. Kim, S. D. Kim, et al., 2006: Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmos. Environ., 40, 593–605, doi: 10.1016/j.atmosenv.2005.11.076.CrossRefGoogle Scholar
  18. Kompalli, S. K., S. S. Babu, K. K. Moorthy, et al., 2014: Aerosol black carbon characteristics over central India: Temporal variation and its dependence on mixed layer height. Atmos. Res., 147–148, 27–37, doi: 10.1016/j.atmosres.2014.04.015.CrossRefGoogle Scholar
  19. Li, M., G. Q. Tang, J. Huang, et al., 2015: Characteristics of winter atmospheric mixing layer height in Beijing–Tianjin–Hebei region and their relationship with the atmospheric pollution. Environ. Sci., 36, 1935–1943, doi: 10.13227/j.hjkx.2015.06.004. (in Chinese)Google Scholar
  20. Liu, H. N., W. L. Ma, J. L. Qian, et al., 2015: Effect of urbanization on the urban meteorology and air pollution in Hangzhou. J. Meteor. Res., 29, 950–965, doi: 10.1007/s13351-015-5013-y.CrossRefGoogle Scholar
  21. Liu, Q., Y. Wang, Z. Y. Kuang, et al., 2016: Vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai. J. Meteor. Res., 30, 598–613, doi: 10.1007/s13351-016-5092-4.CrossRefGoogle Scholar
  22. Molnár, A., E. Mészáros, K. Imre, et al., 2008: Trends in visibility over Hungary between 1996 and 2002. Atmos. Environ., 42, 2621–2629, doi: 10.1016/j.atmosenv.2007.05.012.CrossRefGoogle Scholar
  23. Oleniacz, R., M. Bogacki, A. Szulecka, et al., 2016: Assessing the impact of wind speed and mixing-layer height on air quality in Krakow (Poland) in the years 2014–2015. J. Civ. Eng. Environ. Arch., 63, 315–342, doi: 10.7862/rb.2016.168.Google Scholar
  24. Qin, K., L. X. Wu, M. S. Wong, et al., 2016: Trans-boundary aerosol transport during a winter haze episode in China revealed by ground-based lidar and CALIPSO satellite. Atmos. Environ., 141, 20–29, doi: 10.1016/j.atmosenv.2016.06.042.CrossRefGoogle Scholar
  25. Quan, J. N., Y. Gao, Q. Zhang, et al., 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 34–40, doi: 10.1016/j.partic.2012.04.005.CrossRefGoogle Scholar
  26. Quan, J. N., X. X. Tie, Q. Zhang, et al., 2014: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ., 88, 83–89, doi: 10.1016/j.atmosenv.2014.01.058.CrossRefGoogle Scholar
  27. Revuelta, M. A., M. Sastre, A. J. Fernández, et al., 2012: Characterization of the Eyjafjallajökull volcanic plume over the Iberian Peninsula by lidar remote sensing and ground-level data collection. Atmos. Environ., 48, 46–55, doi: 10.1016/j.atmosenv.2011.05.033.CrossRefGoogle Scholar
  28. Schichtel, B. A., R. B. Husar, S. R. Falke, et al., 2001: Haze trends over the United States, 1980–1995. Atmos. Environ., 35, 5205–5210, doi: 10.1016/S1352-2310(01)00317-X.CrossRefGoogle Scholar
  29. Sugimoto, N., T. Nishizawa, A. Shimizu, et al., 2015: Detection of internally mixed Asian dust with air pollution aerosols using a polarization optical particle counter and a polarization-sensit-ive two-wavelength lidar. J. Quant. Spectros. Radiat. Transf., 150, 107–113, doi: 10.1016/j.jqsrt.2014.08.003.CrossRefGoogle Scholar
  30. Sun, Y., T. Song, G. Q. Tang, et al., 2013: The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. Atmos. Environ., 74, 413–421, doi: 10.1016/j.atmosenv.2013.03.011.CrossRefGoogle Scholar
  31. Sun, Y. L., Q. Jiang, Z. F. Wang, et al., 2014: Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res., 119, 4380–4398, doi: 10.1002/2014JD021641.Google Scholar
  32. Sun, Y. W., X. H. Zhou, K. M. Wai, et al., 2013: Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: Implication of source contribution. Atmos. Res., 134, 24–34, doi: 10.1016/j.atmosres.2013.07.011.CrossRefGoogle Scholar
  33. Tang, G., X. Zhu, B. Hu, et al., 2015: Impact of emission controls on air quality in Beijing during APEC 2014: Lidar ceilometer observations. Atmos. Chem. Phys., 15, 12667–12680, doi: 10.5194/acp-15-12667-2015.CrossRefGoogle Scholar
  34. Tang, G. Q., J. Q. Zhang, X. W. Zhu, et al., 2016: Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys., 16, 2459–2475, doi: 10.5194/acp-16-2459-2016.CrossRefGoogle Scholar
  35. Tesche, M., A. Ansmann, D. Müller, et al., 2007: Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in South and North China. Appl. Opt., 46, 6302–6308, doi: 10.1364/AO.46.006302.CrossRefGoogle Scholar
  36. Tie, X. X., and J. J. Cao, 2009: Aerosol pollution in China: Present and future impact on environment. Particuology, 7, 426–431, doi: 10.1016/j.partic.2009.09.003.CrossRefGoogle Scholar
  37. Uno, I., N. Sugimoto, A. Shimizu, et al., 2014: Record heavy PM2.5 air pollution over China in January 2013: Vertical and horizontal dimensions. SOLA, 10, 136–140, doi: 10.2151/sola.2014-028.CrossRefGoogle Scholar
  38. Wang, Y. S., L. Yao, L. L. Wang, et al., 2014: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci., 57, 14–25, doi: 10.1007/s11430-013-4773-4.CrossRefGoogle Scholar
  39. Wu, Y. H., L. Cordero, B. Gross, et al., 2012: Smoke plume optical properties and transport observed by a multi-wavelength lidar, sunphotometer and satellite. Atmos. Environ., 63, 32–42, doi: 10.1016/j.atmosenv.2012.09.016.CrossRefGoogle Scholar
  40. Yang, X., C. F. Zhao, L. J. Zhou, et al., 2016a: Distinct impact of different types of aerosols on surface solar radiation in China. J. Geophys. Res. Atmos., 121, 6459–6471, doi: 10.1002/2016JD024938.CrossRefGoogle Scholar
  41. Yang, X., C. F. Zhao, J. P. Guo, et al., 2016b: Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing. J. Geophys. Res. Atmos., 121, 4093–4099, doi: 10.1002/2015JD024645.CrossRefGoogle Scholar
  42. Yue, D. L., M. Hu, Z. J. Wu, et al., 2010: Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes. Atmos. Chem. Phys., 10, 9431–9439, doi: 10.5194/acp-10-9431-2010.CrossRefGoogle Scholar
  43. Zhang, J. K., Y. Sun, Z. R. Liu, et al., 2014: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos. Chem. Phys., 14, 2887–2903, doi: 10.5194/acp-14-2887-2014.CrossRefGoogle Scholar
  44. Zhang, Q., X. C. Ma, X. X. Tie, et al., 2009: Vertical distributions of aerosols under different weather conditions: Analysis of insitu aircraft measurements in Beijing, China. Atmos. Environ., 43, 5526–5535, doi: 10.1016/j.atmosenv.2009.05.037.CrossRefGoogle Scholar
  45. Zhang, X. Y., Y. Q. Wang, T. Niu, et al., 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 12, 779–799, doi: 10.5194/acp-12-779-2012.CrossRefGoogle Scholar
  46. Zhang, Y. W., Q. Zhang, C. P. Leng, et al., 2015: Evolution of aerosol vertical distribution during particulate pollution events in Shanghai. J. Meteor. Res., 29, 385–399, doi: 10.1007/s13351-014-4089-0.CrossRefGoogle Scholar
  47. Zhao, C. F., Y. Z. Wang, Q. Q. Wang, et al., 2014: A new cloud and aerosol layer detection method based on micropulse lidar measurements. J. Geophys. Res., 119, doi: 10.1002/2014JD021760.Google Scholar
  48. Zhao, H. J., H. Z. Che, X. Y. Zhang, et al., 2013: Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res., 4, 427–434, doi: 10.5094/APR.2013.049.CrossRefGoogle Scholar
  49. Zheng, C. W., C. F. Zhao, Y. N. Zhu, et al., 2017: Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmos. Chem. Phys., 17, 13473–13489, doi: 10.5194/acp-2016-1170.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanjun Ma
    • 1
  • Hujia Zhao
    • 1
    • 3
  • Yunsheng Dong
    • 2
  • Huizheng Che
    • 3
  • Xiaoxiao Li
    • 4
  • Ye Hong
    • 1
  • Xiaolan Li
    • 1
  • Hongbin Yang
    • 1
  • Yuche Liu
    • 1
  • Yangfeng Wang
    • 1
  • Ningwei Liu
    • 1
  • Cuiyan Sun
    • 5
  1. 1.Institute of Atmospheric EnvironmentChina Meteorological AdministrationShenyangChina
  2. 2.Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiChina
  3. 3.State Key Laboratory of Severe Weather/Institute of Atmospheric CompositionChinese Academy of Meteorological SciencesBeijingChina
  4. 4.Dalian Municipal Meteorological ObservatoryDalianChina
  5. 5.Jinan Center of Aviation ControlJinanChina

Personalised recommendations