Advertisement

Journal of Meteorological Research

, Volume 32, Issue 3, pp 380–393 | Cite as

Influence of Springtime Atlantic SST on ENSO: Role of the Madden–Julian Oscillation

  • Xin Yan
  • Juzhang Ren
  • Jianhua Ju
  • Song Yang
Regular Articles

Abstract

Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.

Key words

Madden–Julian Oscillation (MJO) Atlantic sea surface temperature anomaly (SSTA) Walker circulation teleconnection El Niño–Southern Oscillation (ENSO) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the constructive suggestions from the two anonymous reviewers, from Dr. Junmei Lyu of the Chinese Academy of Meteorological Sciences, and from Professor V. Krishnamurthy of the Geroge Mason University.

References

  1. Alexander M. A., I. Bladé, M. Newman, et al., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.CrossRefGoogle Scholar
  2. Bergman J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14, 1702–1719, doi: 10.1175/1520-0442(2001)014<1702:IASIAT>2.0.CO;2.CrossRefGoogle Scholar
  3. Chang P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516–518, doi: 10.1038/385516a0.CrossRefGoogle Scholar
  4. Chang P., Y. Fang, R. Saravanan, et al., 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324–328, doi: 10.1038/nature05053.CrossRefGoogle Scholar
  5. Chen X., J. Ling, and C. Y. Li, 2015: Evolution of the Madden–Julian Oscillation in two types of El Niño. J. Climate, 29, 1919–1934, doi: 10.1175/JCLI-D-15-0486.1.CrossRefGoogle Scholar
  6. Chiang J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616–2631, doi: 10.1175/15200442(2002)015<2616:TTTVCB>2.0.CO;2.CrossRefGoogle Scholar
  7. Chiodi A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian Oscillation and westerly wind events. J. Climate, 27, 3619–3642, doi: 10.1175/JCLI-D-13-00547.1.CrossRefGoogle Scholar
  8. Ding H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño–Southern Oscillation. Climate Dyn., 38, 1965–1972, doi: 10.1007/s00382-011-1097-y.CrossRefGoogle Scholar
  9. Ding Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505, doi: 10.1175/JCLI3473.1.CrossRefGoogle Scholar
  10. Ding R. Q., J. P. Li, Y.-H. Tseng, et al., 2017: Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Climate Dyn., 49, 1321–1339, doi: 10.1007/ s00382-016-3389-8.CrossRefGoogle Scholar
  11. Dommenget D., V. Semenov, and M. Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33, L11701, doi: 10.1029/2006GL025871.CrossRefGoogle Scholar
  12. Enfield D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929–945, doi: 10.1029/96JC03296.CrossRefGoogle Scholar
  13. Feng J., P. Liu, W. Chen, et al., 2015: Contrasting Madden–Julian Oscillation activity during various stages of EP and CP El Niños. Atmos. Sci. Lett., 16, 32–37, doi: 10.1002/asl2.516.CrossRefGoogle Scholar
  14. Frauen C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706, doi: 10.1029/2011GL050520.CrossRefGoogle Scholar
  15. Giannini A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297–311, doi: 10.1175/1520-0442(2000)013 <0297:IVOCRE>2.0.CO;2.CrossRefGoogle Scholar
  16. Gill A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.CrossRefGoogle Scholar
  17. Gu W., C. Y. Li, X. Wang, et al., 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101–108, doi: 10.1007/s00376-009-0101-5.CrossRefGoogle Scholar
  18. Gushchina D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 3669–3681, doi: 10.1175/MWR-D-11-00267.1.CrossRefGoogle Scholar
  19. Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 4012–4017, doi: 10.1002/grl.50729.CrossRefGoogle Scholar
  20. Ham, Y.-G., J.-S. Kug, J.-Y. Park, et al., 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112–116, doi: 10.1038/ngeo1686.CrossRefGoogle Scholar
  21. Ham, Y.-G., and J.-S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 3103–3117, doi: 10.1007/s00382-015-2527-z.CrossRefGoogle Scholar
  22. Hendon H. H., M. C. Wheeler, and C. D. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531–543, doi: 10.1175/JCLI4003.1.CrossRefGoogle Scholar
  23. Hoell A., M. Barlow, M. C. Wheeler, et al., 2014: Disruptions of El Niño–Southern Oscillation teleconnections by the Madden–Julian Oscillation. Geophys. Res. Lett., 41, 998–1004, doi: 10.1002/2013GL058648.CrossRefGoogle Scholar
  24. Hu C. D., S. Yang, Q. G. Wu, et al., 2016: Reinspecting two types of El Niño: A new pair of Niño indices for improving realtime ENSO monitoring. Climate Dyn., 47, 4031–4049, doi: 10.1007/s00382-016-3059-x.CrossRefGoogle Scholar
  25. Huang B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23, 133–152, doi: 10.1007/s00382-004-0443-8.CrossRefGoogle Scholar
  26. Jansen M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550–567, doi: 10.1175/2008JCLI2243.1.CrossRefGoogle Scholar
  27. Kalnay E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  28. Kessler W. S., 2001: EOF representations of the Madden–Julian Oscillation and its connection with ENSO. J. Climate, 14, 3055–3061, doi: 10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2.CrossRefGoogle Scholar
  29. Kessler W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian Oscillation into the ENSO cycle. J. Climate, 13, 3560–3575, doi: 10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.CrossRefGoogle Scholar
  30. Kikuchi K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 1989–2000, doi: 10.1007/s00382-011-1159-1.CrossRefGoogle Scholar
  31. Kiladis G. N., J. Dias, K. H. Straub, et al., 2013: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715, doi: 10.1175/MWR-D-13-00301.1.CrossRefGoogle Scholar
  32. Klein S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.CrossRefGoogle Scholar
  33. Kucharski F., I.-S. Kang, R. Farneti, et al., 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702, doi: 10.1029/2010GL046248.CrossRefGoogle Scholar
  34. Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, doi: 10.1029/2011GL048237.CrossRefGoogle Scholar
  35. Lau, W. K.-M., and D. E. Waliser, 2011: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin Heidelberg, 614 pp, doi: 10.1007/978-3-642-13914-7.Google Scholar
  36. Li C. Y., J. Ling, J. Song, et al., 2014: Research progress in China on the tropical atmospheric intraseasonal oscillation. J. Meteor. Res., 28, 671–692, doi: 10.1007/s13351-014-4015-5.CrossRefGoogle Scholar
  37. Li T., 2014: Recent advance in understanding the dynamics of the Madden–Julian Oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.Google Scholar
  38. Lin A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 6304–6320, doi: 10.1175/2008JCLI2331.1.CrossRefGoogle Scholar
  39. Martín-Rey M., I. Polo, B. Rodríguez-Fonseca, et al., 2012: Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Scientia Marina, 76, 105–116, doi: 10.3989/scimar.03610.19A.CrossRefGoogle Scholar
  40. Martín-Rey M., B. Rodríguez-Fonseca, I. Polo, et al., 2014: On the Atlantic–Pacific Niños connection: A multidecadal modulated mode. Climate Dyn., 43, 3163–3178, doi: 10.1007/s00382-014-2305-3.CrossRefGoogle Scholar
  41. Matsuno T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43, doi: 10.2151/jmsj1965. 44.1_25.CrossRefGoogle Scholar
  42. McPhaden M. J., X. B. Zhang, H. H. Hendon, et al., 2006: Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett., 33, L16702, doi: 10.1029/2006GL026786.CrossRefGoogle Scholar
  43. Mo K. C., and S. Häkkinen, 2001: Interannual variability in the tropical Atlantic and linkages to the Pacific. J. Climate, 14, 2740–2762, doi: 10.1175/1520-0442(2001)014<2740:IVITTA>2.0.CO;2.CrossRefGoogle Scholar
  44. Newman M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 2958–2977, doi: 10.1175/2008JCLI2659.1.CrossRefGoogle Scholar
  45. Penland C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483–496, doi: 10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2.CrossRefGoogle Scholar
  46. Polo I., M. Martin-Rey, B. Rodriguez-Fonseca, et al., 2015: Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dyn., 44, 115–131, doi: 10.1007/s00382-014-2354-7.CrossRefGoogle Scholar
  47. Puy M., J. Vialard, M. Lengaigne, et al., 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian Oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 2155–2178, doi: 10.1007/s00382-015-2695-x.CrossRefGoogle Scholar
  48. Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.CrossRefGoogle Scholar
  49. Rodríguez-Fonseca B., I. Polo, J. García-Serrano, et al., 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, doi: 10.1029/2009GL040048.CrossRefGoogle Scholar
  50. Saravanan R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 2177–2194, doi: 10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.CrossRefGoogle Scholar
  51. Sasaki W., T. Doi, K. J. Richards, et al., 2014: Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Climate Dyn., 43, 2539–2552, doi: 10.1007/s00382-014-2072-1.CrossRefGoogle Scholar
  52. Seiki A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 3325–3345, doi: 10.1175/MWR3477.1.Google Scholar
  53. Seiki A., Y. N. Takayabu, K. Yoneyama, et al., 2009: The oceanic response to the Madden–Julian Oscillation and ENSO. SOLA, 5, 93–96, doi: 10.2151/sola.2009-024.CrossRefGoogle Scholar
  54. Seo, K.-H., and Y. Xue, 2005: MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP global ocean data assimilation system. Geophys. Res. Lett., 32, L07712, doi: 10.1029/2005GL022511.CrossRefGoogle Scholar
  55. Shinoda T., H. E. Hurlburt, and E. J. Metzger, 2011: Anomalous tropical ocean circulation associated with La Niña Modoki. J. Geophys. Res., 116, C12001, doi: 10.1029/2011JC007304.CrossRefGoogle Scholar
  56. Smith T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.CrossRefGoogle Scholar
  57. Tang Y. M., and B. Yu, 2008a: MJO and its relationship to ENSO. J. Geophys. Res., 113, D14106, doi: 10.1029/2007JD009230.CrossRefGoogle Scholar
  58. Tang Y. M., and B. Yu, 2008b: An analysis of nonlinear relationship between the MJO and ENSO. J. Meteor. Soc. Japan, 86, 867–881, doi: 10.2151/jmsj.86.867.CrossRefGoogle Scholar
  59. Timmermann A., Y. Okumura, S.-I. An, et al., 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 4899–4919, doi: 10.1175/JCLI4283.1.CrossRefGoogle Scholar
  60. Uvo C. B., C. A. Repelli, S. E. Zebiak, et al., 1998: The relationships between tropical Pacific and Atlantic SST and Northeast Brazil monthly precipitation. J. Climate, 11, 551–562, doi: 10.1175/15200442(1998)011<0551:TRBTPA>2.0.CO;2.CrossRefGoogle Scholar
  61. Wang C. Z., S.-K. Lee, and C. R. Mechoso, 2010: Interhemispheric influence of the Atlantic warm pool on the southeastern Pacific. J. Climate, 23, 404–418, doi: 10.1175/2009JCLI3127.1.CrossRefGoogle Scholar
  62. Wheeler M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.CrossRefGoogle Scholar
  63. Wiedermann M., A. Radebach, J. F. Donges, et al., 2016: A climate network-based index to discriminate different types of El Niño and La Niña. Geophys. Res. Lett., 43, 7176–7185, doi: 10.1002/2016GL069119.CrossRefGoogle Scholar
  64. Wright P. B., 1986: Precursors of the Southern Oscillation. Int. J. Climatol., 6, 17–30, doi: 10.1002/joc.3370060103.CrossRefGoogle Scholar
  65. Wu Z. W., J. P. Li, Z. H. Jiang, et al., 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian Summer monsoon and ENSO. Int. J. Climatol., 32, 794–800, doi: 10.1002/joc.2309.CrossRefGoogle Scholar
  66. Xue Y., W. Higgins, and V. Kousky, 2002: Influences of the Madden–Julian Oscillation on temperature and precipitation in North America during ENSO-neutral and weak ENSO winters. Proc. Workshop on Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal Time Scales, Mitchellville, MD, NASA Goddard Space Flight Center, 4–4.Google Scholar
  67. Xue Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 1601–1612, doi: 10.1175/1520-0442-16.10.1601.CrossRefGoogle Scholar
  68. Yan X., and J. H. Ju, 2016: Analysis of the major characteristics of persistent MJO anomalies in summer. Chinese J. Atmos. Sci., 40, 1048–1058, doi: 10.3878/j.issn.1006-9895.1601.15248. (in Chinese)Google Scholar
  69. Yan X., J. H. Ju, and W. W. Gan, 2016: The influence of persistent anomaly of MJO on ENSO. J. Trop. Meteor., 22, 24–36, doi: 10.16555/j.1006-8775.2016.S1.003.Google Scholar
  70. Yu J. H., T. Li, Z. M. Tan, et al., 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865–877, doi: 10.1007/s00382-015-2618-x.CrossRefGoogle Scholar
  71. Zavala-Garay J., C. Zhang, A. M. Moore, et al., 2005: The linear response of ENSO to the Madden–Julian Oscillation. J. Climate, 18, 2441–2459, doi: 10.1175/JCLI3408.1.CrossRefGoogle Scholar
  72. Zavala-Garay J., C. Zhang, A. M. Moore, et al., 2008: Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J. Climate, 21, 3704–3721, doi: 10.1175/2007JCLI1188.1.CrossRefGoogle Scholar
  73. Zhang C. D., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian Oscillation in the equatorial Pacific. J. Climate, 15, 2429–2445, doi: 10.1175/1520-0442(2002)015 <2429:SAOEAT>2.0.CO;2.CrossRefGoogle Scholar
  74. Zuo J. Q., W. J. Li, C. H. Sun, et al., 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 1173–1186, doi: 10.1007/s00376-012-2125-5.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Atmospheric SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Province Key Laboratory for Climate Change and Natural Disaster StudiesSun Yat-sen UniversityGuangzhouChina
  3. 3.Yunnan Research Institute of MeteorologyKunmingChina
  4. 4.Yunnan Provincial Meteorological BureauKunmingChina

Personalised recommendations