Journal of Meteorological Research

, Volume 32, Issue 1, pp 124–134 | Cite as

How Does Tropical Cyclone Size Affect the Onset Timing of Secondary Eyewall Formation?

  • Liang Guan
  • Xuyang Ge
Regular Articles


By using idealized numerical simulations, the impact of tropical cyclone size on secondary eyewall formation (SEF) is examined. Both unbalanced boundary layer and balanced processes are examined to reveal the underlying mechanism. The results show that a tropical cyclone (TC) with a larger initial size favors a quicker SEF and a larger outer eyewall. For a TC with a larger initial size, it will lead to a stronger surface entropy flux, and thus more active outer convection. Meanwhile, a greater inertial stability helps the conversion from diabatic heating to kinetic energy. Furthermore, the progressively broadening of the tangential wind field will induce significant boundary layer imbalances. This unbalanced boundary layer process results in a supergradient wind zone that acts as an important mechanism for triggering and maintaining deep convection. In short, different behaviors of balanced and unbalanced processes associated with the initial wind profile lead to different development rates of the secondary eyewall.


secondary eyewall formation tropical cyclone size surface entropy flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 3216–3230, doi: 10.1175/JAS-D-12-0318.1.CrossRefGoogle Scholar
  2. Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947–957, doi: 10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2.CrossRefGoogle Scholar
  3. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  4. Gao, S., S. N. Zhai, B. Q. Chen, et al., 2017: Water budget and intensity change of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 145, 3009–3023, doi: 10.1175/MWRD-17-0033.1.CrossRefGoogle Scholar
  5. Ge, X. Y., 2015: Impacts of environmental humidity on concentric eyewall structure. Atmos. Sci. Let., 16, 273–278, doi: 10.1002/asl2.553.CrossRefGoogle Scholar
  6. Ge, X. Y., L. Guan, and S. W. Zhou., 2016: Impacts of initial structure of tropical cyclone on secondary eyewall formation. Atmos. Sci. Let., 17, 569–574, doi: 10.1002/asl.707.CrossRefGoogle Scholar
  7. Hill, A. K, and Lackmann G. M., 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294–3315, doi: 10.1175/2009MWR2679.1.CrossRefGoogle Scholar
  8. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi: 10.1175/MWR3199.1.CrossRefGoogle Scholar
  9. Houze, R. A. Jr., J. Cetrone, S. R. Brodzik, et al., 2006: The hurricane rainband and intensity change experiment (RAINEX): Observations and modeling of hurricanes Katrina, Ophelia, and Rita (2005). Bull. Amer. Meteor. Soc., 87, 48–55, doi: 10.1175/BAMS-87-11-1503.CrossRefGoogle Scholar
  10. Houze, R. A. Jr., S. S. Chen, B. F. Smull, et al., 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235–1239, doi: 10.1126/science.1135650.CrossRefGoogle Scholar
  11. Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662–674, doi: 10.1175/JAS-D-11-0114.1.Google Scholar
  12. Kain, J. S., and Fritsch J. M., 1993: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49, 93–106, doi: 10.1007/BF01025402.CrossRefGoogle Scholar
  13. Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 2808–2830, doi: 10.1175/JAS-D-13-046.1.CrossRefGoogle Scholar
  14. Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876–892, doi: 10.1175/2008MWR2701.1.CrossRefGoogle Scholar
  15. Kossin, J. P., and M. Sitkowski, 2012: Predicting hurricane intensity and structure changes associated with eyewall replacement cycles. Wea. Forecasting, 27, 484–488, doi: 10.1175/WAF-D-11-00106.1.CrossRefGoogle Scholar
  16. Kuo, H.-C., L.-Y. Lin, C.-P. Chang, et al., 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722–2734, doi: 10.1175/JAS3286.1.CrossRefGoogle Scholar
  17. Kuo, H.-C., W. H. Schubert, C.-L. Tsai, et al., 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183–5198, doi: 10.1175/2008MWR2378.1.CrossRefGoogle Scholar
  18. Kuo, H.-C., C.-P. Chang, Y.-T. Yang, et al., 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 3758–3770, doi: 10.1175/2009MWR2850.1.CrossRefGoogle Scholar
  19. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065–1092,doi:10.1175/1520-0450(1983)022<1065:BPOTS F>2.0.CO;2.CrossRefGoogle Scholar
  20. Menelaou, K., M. K. Yau, and Y. Martinez, 2014: Some aspects of the problem of secondary eyewall formation in idealized three-dimensional nonlinear simulations. J. Adv. Mod. Earth Syst., 63, 491–512, doi: 10.1002/2014MS000316.CrossRefGoogle Scholar
  21. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682, doi: 10.1029/97JD00237.CrossRefGoogle Scholar
  22. Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465, doi: 10.1002/qj.49712353810.CrossRefGoogle Scholar
  23. Nong, S. Y., and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 3323–3338, doi: 10.1256/qj.01.132.CrossRefGoogle Scholar
  24. Qiu, X., and Z. M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953–974, doi: 10.1175/JAS-D-12-084.1.CrossRefGoogle Scholar
  25. Rozoff, C. M., D. S. Nolan, J. P. Kossin, et al., 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 2621–2643, doi: 10.1175/JAS-D-11-0326.1.CrossRefGoogle Scholar
  26. Shapiro, L. J., and Willoughby H. E., 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394, doi: 10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.CrossRefGoogle Scholar
  27. Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 3829–3847, doi: 10.1175/MWR-D-11-00034.1.CrossRefGoogle Scholar
  28. Sun, Y. Q., Y. X. Jiang, B. K. Tan, et al., 2013: The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J. Atmos. Sci., 70, 3818–3837, doi: 10.1175/JASD-13-044.1.CrossRefGoogle Scholar
  29. Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi: 10.1029/2007JD008897.CrossRefGoogle Scholar
  30. Wang, H., C.-C. Wu, and Y. Q. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 3911–3930, doi: 10.1175/JAS-D-15-0146.1.CrossRefGoogle Scholar
  31. Wang, X. B., Y. M. Ma, and N. E. Davidson, 2013: Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 1317–1341, doi: 10.1175/JAS-D-12-017.1.CrossRefGoogle Scholar
  32. Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411, doi: 10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.CrossRefGoogle Scholar
  33. Willoughby, H. E., H. L. Jin, S. J. Lord, et al., 1984: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41, 1169–1186, doi: 10.1175/1520-0469(1984)041<1169:HSAEAS>2.0.CO;2.CrossRefGoogle Scholar
  34. Yang, Y. T., H. C. Kuo, E. A. Hendricks, et al., 2013: Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon. Wea. Rev., 141, 2632–2648, doi: 10.1175/MWR-D-12-00251.1.CrossRefGoogle Scholar
  35. Yang, Y. T., E. A. Hendricks, H.-C. Kuo, et al., 2014: Long-lived concentric eyewalls in Typhoon Soulik (2013). Mon. Wea. Rev., 142, 3365–3371, doi: 10.1175/MWR-D-14-00085.1.CrossRefGoogle Scholar
  36. Zhou, X. Q., and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972–988, doi: 10.1175/2011JAS3575.1.CrossRefGoogle Scholar
  37. Zhou, X. Q., and B. Wang, 2013: Large-scale influences on secondary eyewall size. J. Geophys. Res., 118, 11088–11097, doi: 10.1002/jgrd.50605.Google Scholar
  38. Zhou, X. Q., B. Wang, X. Y. Ge, et al., 2011: Impact of secondary eyewall heating on tropical cyclone intensity change. J. Atmos. Sci., 68, 450–456, doi: 10.1175/2010JAS3624.1.CrossRefGoogle Scholar
  39. Zhu, Z. D., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res., 119, 8049–8072, doi: 10.1002/2014JD021899.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological DisasterNanjing University of Information Science &TechnologyNanjingChina
  2. 2.Shanghai Meteorological Science and Technology Service CenterShanghaiChina

Personalised recommendations