Journal of Meteorological Research

, Volume 32, Issue 1, pp 99–112 | Cite as

Changes in Extreme Maximum Temperature Events and Population Exposure in China under Global Warming Scenarios of 1.5 and 2.0°C: Analysis Using the Regional Climate Model COSMO-CLM

  • Mingjin Zhan
  • Xiucang Li
  • Hemin Sun
  • Jianqing Zhai
  • Tong Jiang
  • Yanjun Wang
Regular Articles


We used daily maximum temperature data (1986–2100) from the COSMO-CLM (COnsortium for Small-scale MOdeling in CLimate Mode) regional climate model and the population statistics for China in 2010 to determine the frequency, intensity, coverage, and population exposure of extreme maximum temperature events (EMTEs) with the intensity–area–duration method. Between 1986 and 2005 (reference period), the frequency, intensity, and coverage of EMTEs are 1330–1680 times yr–1, 31.4–33.3°C, and 1.76–3.88 million km2, respectively. The center of the most severe EMTEs is located in central China and 179.5–392.8 million people are exposed to EMTEs annually. Relative to 1986–2005, the frequency, intensity, and coverage of EMTEs increase by 1.13–6.84, 0.32–1.50, and 15.98%–30.68%, respectively, under 1.5°C warming; under 2.0°C warming, the increases are 1.73–12.48, 0.64–2.76, and 31.96%–50.00%, respectively. It is possible that both the intensity and coverage of future EMTEs could exceed the most severe EMTEs currently observed. Two new centers of EMTEs are projected to develop under 1.5°C warming, one in North China and the other in Southwest China. Under 2.0°C warming, a fourth EMTE center is projected to develop in Northwest China. Under 1.5 and 2.0°C warming, population exposure is projected to increase by 23.2%–39.2% and 26.6%–48%, respectively. From a regional perspective, population exposure is expected to increase most rapidly in Southwest China. A greater proportion of the population in North, Northeast, and Northwest China will be exposed to EMTEs under 2.0°C warming. The results show that a warming world will lead to increases in the intensity, frequency, and coverage of EMTEs. Warming of 2.0°C will lead to both more severe EMTEs and the exposure of more people to EMTEs. Given the probability of the increased occurrence of more severe EMTEs than in the past, it is vitally important to China that the global temperature increase is limited within 1.5°C.


extreme maximum temperature events population exposure 1.5 and 2.0°C global warming COSMO-CLM regional climate model China 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the ISI–MIP coordination group at the Potsdam Institute of Climate Impact Studies in Germany for the provision of the GFDLESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROCESMCHEM, NorESM1-M, and MPI-ESM-LR data. We are grateful to Anqian Wang and Jinlong Huang of the University of the Chinese Academy of Sciences and to Jing Chen, Cheng Jing, and other graduate students for participating in this work. The authors are grateful for the constructive comments and suggestions by the editor and reviewers.


  1. Alexander, L. V., X. Zhang, T. C. Peterson, et al., 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi: 10.1029/2005JD006290.Google Scholar
  2. Andreadis, K. M., E. A. Clark, A. W. Wood, et al., 2005: Twentiethcentury drought in the conterminous United States. J. Hydrometeor., 6, 985–1001, doi: 10.1175/JHM450.1.CrossRefGoogle Scholar
  3. Burkhard, R., W. Andreas, H. Andreas, et al., 2008: The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift, 17, 347–348, doi: 10.1127/0941-2948/2008/0309.CrossRefGoogle Scholar
  4. Cao, L. G., J. Zhong, B. D. Su, et al., 2013: Probability distribution and projected trends of daily precipitation in China. Progressue Inquisitiones de Mutatione Climatis, 4, 153–159, doi: 10.3724/SP.J.1248.2013.153. (in Chinese)Google Scholar
  5. Chen, J., H. B. Liu, Y. J. Wang, et al., 2016: Variation of drought characteristics and its agricultural exposure in North China Plain. Chinese J. Agrometeorol., 37, 587–598, doi: 10.3969/j.issn.1000-6362.2016.05.011. (in Chinese)Google Scholar
  6. China Meteorological Administration, 2013}: The Top Ten Weather and Climate Extreme Events in China in 2013. Available online at Scholar
  7. Dankers, R., N. W. Arnell, D. B. Clark, et al., 2013: A first look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proc. Nat. Acad. Sci. USA, 111, 3257–3261, doi: 10.1073/pnas.1302078110.CrossRefGoogle Scholar
  8. Davie, J. C. S, P. D. Falloon, R. Kahana, et al., 2013: Comparing projections of future changes in runoff from hydrological and biome models in ISI–MIP. Earth Syst. Dynam., 4, 359–374, doi: 10.5194/esd-4-359-2013.CrossRefGoogle Scholar
  9. Diffenbaugh, N. S., and M. Scherer, 2011: Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic Change, 107, 615–624, doi: 10.1007/s10584-011-0112-y.CrossRefGoogle Scholar
  10. Ding, T., W. Qian, and Z. W. Yan, 2010: Changes in hot days and heat waves in China during 1961–2007. Int. J. Climatol., 30, 1452–1462, doi: 10.1002/joc.1989.Google Scholar
  11. Ding, Y. H., G. Y. Ren, Z. C. Zhao, et al., 2007: Detection, causes and projection of climate change over China: An overview of recent progress. Adv. Atmos. Sci., 24, 954–971, doi: 10.1007/s00376-007-0954-4.CrossRefGoogle Scholar
  12. Easterling, D. R., J. L. Evans, P. Y. Groisman, et al., 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417–425, doi: 10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.CrossRefGoogle Scholar
  13. Fischer, T., C. Menz, B. D. Su, et al., 2013: Simulated and projected climate extremes in the Zhujiang River basin, South China, using the regional climate model COSMO-CLM. J. Climatol., 33, 2988–3001, doi: 10.1002/joc.3643.CrossRefGoogle Scholar
  14. Frieler, K., R. Betts, E. Burke, et al., 2016: Assessing the impacts of 1.5°C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev., 10, 1–59, doi: 10.5194/gmd-2016-229.Google Scholar
  15. Gemmer, M., T. Jiang, B. D. Su, et al., 2008: Seasonal precipitation changes in the wet season and their influence on flood/drought hazards in the Yangtze River Basin, China. Quaternary International, 186, 12–21, doi: 10.1016/j.quaint.2007.10.001.CrossRefGoogle Scholar
  16. Greene, S., L. S. Kalkstein, D. M. Mills, et al., 2011: An examination of climate change on extreme heat events and climatemortality relationships in large U.S. cities. Wea. Climate Soc., 3, 281–292, doi: 10.1175/WCAS-D-11-00055.1.CrossRefGoogle Scholar
  17. Hansen, J., M. Sato, R. Ruedy, et al., 2006: Global temperature change. Proc. Nat. Acad. Sci. USA, 103, 14288–14293, doi: 10.1073/pnas.0606291103.CrossRefGoogle Scholar
  18. Homar, V., C. Ramis, R. Romero, et al., 2010: Recent trends in temperature and precipitation over the Balearic Islands (Spain). Climatic Change, 98, 199–211, doi: 10.1007/s10584-009-9664-5.CrossRefGoogle Scholar
  19. Huang, J. L., H. Tao, T. Fischer, et al., 2015: Simulated and projected climate extremes in the Tarim River basin using the regional climate model CCLM. Stoch. Environ. Res. Risk Assess., 29, 2061–2071, doi: 10.1007/s00477-015-1059-8.CrossRefGoogle Scholar
  20. Huang, J. L., Y. J. Wang, T. Fischer, et al., 2017a: Simulation and projection of climatic changes in the Indus River Basin, using the regional climate model COSMO-CLM. Int. J. Climatol., 37, 2545–2562, doi: 10.1002/joc.4864.CrossRefGoogle Scholar
  21. Huang, J. L., J. Q. Zhai, T. Jiang, et al., 2017b: Analysis of future drought characteristics in China using the regional climate model CCLM. Climate Dyn., doi: 10.1007/s00382-017-3623-z.Google Scholar
  22. IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York, NY, USA, 326 pp.Google Scholar
  23. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G. -K. Plattner, et al., Eds., United Kingdom and New York, NY, USA, Cambridge University Press, 356 pp.Google Scholar
  24. IPCC, 2014: Summary for Policymakers. Climate Change 2014: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field, C. B., V. R. Barros, D. J. Dokken, et al., Eds., United Kingdom and New York, NY, USA, Cambridge University Press, 569 pp.Google Scholar
  25. Ito, A., K. Nishina, and H. M. Noda, 2016: Impacts of future climate change on the carbon budget of northern high-latitude terrestrial ecosystems: An analysis using ISI-MIP data. Polar Sci., 10, 346–355, doi: 10.1016/j.polar.2015.11.002.CrossRefGoogle Scholar
  26. Jing, C., T. Jiang, Y. J. Wang, et al., 2016: A study on regional extreme precipitation events and the exposure of population and economy in China. Acta Meteor. Sinica, 74, 572–582, doi: 10.11676/qxxb2016.037. (in Chinese)Google Scholar
  27. Karl, T. R., and D. R. Easterling, 1999: Climate extremes: Selected review and future research directions. Climatic Change, 42, 309–325, doi: 10.1023/A:1005436904097.CrossRefGoogle Scholar
  28. Kothawale, D. R., and K. R. Kumar, 2005: On the recent changes in surface temperature trends over India. Geophys. Res. Lett., 32, L18714, doi: 10.1029/2005GL023528.CrossRefGoogle Scholar
  29. Kousari, M. R., H. Ahani, and R. Hendi-Zadeh, 2013: Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Global and Planetary Change, 111, 97–110, doi: 10.1016/j.gloplacha.2013.08.011.CrossRefGoogle Scholar
  30. Kruger, A. C., and S. S. Sekele, 2013: Trends in extreme temperature indices in South Africa: 1962–2009. Int. J. Climatol., 33, 661–676, doi: 10.1002/joc.3455.CrossRefGoogle Scholar
  31. National Bureau of Statistics of the People’s Republic of China, 2010}: The Sixth Nationwide Population Census Data. [Available online at]Google Scholar
  32. National Center for Health Statistics, 2007}: National Vital Statistics System: Mortality data. [Available online at http://www.]Google Scholar
  33. National Weather Service, 2009}: Weather Fatalities. [Available online at]Google Scholar
  34. Perkins, S. E., L. V. Alexander, and J. R. Nairn, 2012: Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett., 39, L20714, doi: 10.1029/2012GL053361.CrossRefGoogle Scholar
  35. Qin, N. X., J. N. Wang, G. S. Yang, et al., 2015: Spatial and temporal variations of extreme precipitation and temperature events for Southwest China in 1960–2009. Geoenvironmental Disasters, 2, doi: 10.1186/s40677-015-0014-9.Google Scholar
  36. Rey, G., A. Fouillet, P. Bessemoulin, et al., 2009: Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality. Eur. J. Epidemiol., 24, 495–502, doi: 10.1007/s10654-009-9374-3.CrossRefGoogle Scholar
  37. Rogelj, J., W. Hare, J. Lowe, et al., 2011: Emission pathways consistent with a 2 °C global temperature limit. Nat. Climate Change, 1, 413–418, doi: 10.1038/nclimate1258.CrossRefGoogle Scholar
  38. Schleussner, C. -F., T. K. Lissner, E. M. Fischer, et al., 2016: Differential climate impacts for policy-relevant limits to global warming: The case of 1.5°C and 2°C. Earth Syst. Dynam., 7, 327–351, doi: 10.5194/esd-7-327-2016.CrossRefGoogle Scholar
  39. Sheffield, J., K. M. Andreadis, E. F. Wood, et al., 2009: Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. J. Climate, 22, 1962–1981, doi: 10.1175/2008JCLI2722.1.CrossRefGoogle Scholar
  40. Shi, Y. F., Y. P. Shen, D. L. Li, et al., 2003: Discussion on the present climate Change from warm-dry to warm-wet in Northwest China. Quaternary Sciences, 23, 152–164, doi: 10.3321/j.issn:1001-7410.2003.02.005. (in Chinese)Google Scholar
  41. Steppeler, J., G. Doms, U. Schättler, et al., 2003: Meso-gamma scale forecasts using thenon-hydrostatic model LM. Meteor. Atmos. Phys., 82, 75–96, doi: 10.1007/s00703-001-0592-9.CrossRefGoogle Scholar
  42. Su, B., J. L. Huang, M. Gemmer, et al., 2016: Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmos. Res., 178-179, 138–149, doi: 10.1016/j.atmosres.2016.03.023.CrossRefGoogle Scholar
  43. Tan, F., B. D. Su, C. Gao, et al., 2012: High-resolution regional climate model (CCLM) for simulation of precipitation in the Huaihe River Basin, China. Resour. Environ. Yangtze Basin, 21, 1236–1242. (in Chinese)Google Scholar
  44. Thomson, A. M., K. V. Calvin, S. J. Smith, et al., 2011: RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109, 77–94, doi: 10.1007/s10584-011-0151-4.CrossRefGoogle Scholar
  45. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophy. Res. Atmos., 106, 7183–7192, doi: 10.1029/2000JD900719.CrossRefGoogle Scholar
  46. United Nations Framework Convention on Climate Change (UNFCCC), 2015}: The Paris Agreement. [Available online at]Google Scholar
  47. Upperman, C. R., J. Parker, C. S. Jiang, et al., 2015: Frequency of extreme heat event as a surrogate exposure metric for examining the human health effects of climate change. PLoS One, 10, e0144202, doi: 10.1371/journal.pone.0144202.CrossRefGoogle Scholar
  48. Valleron, A. J., and A. Boumendil, 2004: Epidemiology and heat waves: Analysis of the 2003 episode in France. Comptes Rendus Biologies, 327, 1125–1141, doi: 10.1016/j.crvi.2004.09.009.CrossRefGoogle Scholar
  49. Van Vuuren, D. P., J. Edmonds, M. Kainuma, et al., 2011: The representative concentration pathways: An overview. Climatic Change, 109, 5, doi: 10.1007/s10584-011-0148-z.CrossRefGoogle Scholar
  50. Vescovi, L., A. Bourque, G. Simonet, et al., 2009: Transfer of climate knowledge via a regional climate-change management body to support vulnerability, impact assessments and adaptation measures. Climate Res., 40, 163–173, doi: 10.3354/cr00787.CrossRefGoogle Scholar
  51. Vose, R. S., D. R. Easterling, and B. Gleason, 2005: Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett., 32, L23822, doi: 10.1029/2005GL024379.CrossRefGoogle Scholar
  52. Wang, D. N., C. Menz, T. Simon, et al., 2013: Regional dynamical downscaling with CCLM over East Asia. Meteor. Atmos. Phys., 121, 39–53, doi: 10.1007/s00703-013-0250-z.CrossRefGoogle Scholar
  53. Wang, P. X., and J. H. Yang, 2007: Extreme high temperature events and response to regional warming in recent 45 years in Northwest China. J. Desert Res., 27, 649–655.Google Scholar
  54. Warszawski, L., K. Frieler, V. Huber, et al., 2014: The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Proc. Nat. Acad. Sci. USA, 111, 3228–3232, doi: 10.1073/pnas.1312330110.CrossRefGoogle Scholar
  55. Xu, Y., X. J. Gao, Y. Shen, et al., 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26, 763–772, doi: 10.1007/s00376-009-9029-z.CrossRefGoogle Scholar
  56. Zhai, J. Q., J. L. Huang, B. D. Su, et al., 2017: Intensity–area–duration analysis of droughts in China, 1960–2013. Climate Dyn., 48, 151–168, doi: 10.1007/s00382-016-3066-y.CrossRefGoogle Scholar
  57. Zhang, F., H. Gao, and X. Cui, 2008: Frequency of extreme high temperature days in China, 1961–2003. Weather, 63, 46–49, doi: 10.1002/wea.136.CrossRefGoogle Scholar
  58. Zhang, S. Y., S. R. Wang, Y. S. Zhang, et al., 2004: The climatic character of high temperature and the prediction in the large cities of east of China. J. Tropical Meteor., 20, 750–760. (in Chinese)Google Scholar
  59. Zhou, Y., and G. Y. Ren, 2011: Change in extreme temperature event frequency over mainland China, 1961–2008. Climate Res., 50, 125–139, doi: 10.3354/cr01053.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mingjin Zhan
    • 1
    • 2
    • 5
  • Xiucang Li
    • 3
    • 4
  • Hemin Sun
    • 3
  • Jianqing Zhai
    • 4
  • Tong Jiang
    • 4
  • Yanjun Wang
    • 3
  1. 1.Chinese Academy of Meteorological SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Geography and Remote SensingNanjing University of Information Science & TechnologyNanjingChina
  4. 4.National Climate CenterChina Meteorological AdministrationBeijingChina
  5. 5.Jiangxi Provincial Climate CenterNanchangChina

Personalised recommendations