Journal of Meteorological Research

, Volume 31, Issue 6, pp 1149–1160 | Cite as

Characteristics of mesoscale vortices over China in 2015

Regular Articles

Abstract

Mesoscale vortices, which appear at middle and lower levels of rainstorms, are cyclonic circulations with a size ranging from tens of kilometers to several hundred kilometers. Mesoscale vortices often have close relationships with convective activities. The ERA-Interim dataset and an automatic vortex-searching method were used to identify the mesoscale vortices occurring over China in 2015 and their basic characteristics were analyzed. The mesoscale vortices are divided into three categories: mesoscale convective vortices, mesoscale stratiform vortices, and mesoscale dry vortices. The mesoscale convective vortices have the largest intensity, size, and duration, whereas the mesoscale dry vortices have the smallest. Mesoscale convective vortices are able to form in any direction of the parent mesoscale convective system, although the secondary convection tends to appear to the southeast of the parent vortices. The mesoscale vortices tend to generate in the transition area between high and low altitudes. The leeward side of the Tibetan Plateau is the main source region of mesoscale vortices in China. Most of vortices are generated at midday and midnight. The activities of mesoscale convective vortices and mesoscale stratiform vortices peak in summer, whereas those of the mesoscale dry vortices peak in winter.

Keywords

mesoscale vortex mesoscale convective vortex mesoscale convective system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104–118, doi: 10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.CrossRefGoogle Scholar
  2. Chen, L. S., and Z. X. Luo, 2004: Interaction of typhoon and mesoscale vortex. Adv. Atmos. Sci., 21, 515–528, doi: 10.1007/BF02915719.CrossRefGoogle Scholar
  3. Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 2401–2426.CrossRefGoogle Scholar
  4. Chen, Z. M., W. B. Min, and C. G. Cui, 2007: Diagnostic analysis on the formation and development of mesoscale vortex systems. Torrential Rain and Disasters, 26, 29–34. (in Chinese)Google Scholar
  5. Cheng, L. S., and W. H. Feng, 2001: Analyses and numerical simulation on an abrupt heavy rainfall and structure of a mesoscale vortex during July 1998. Chinese J. Atmos. Sci., 25, 465–478. (in Chinese)Google Scholar
  6. Davis, C. A., and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 2029–2049, doi: 10.1175/MWR3398.1.CrossRefGoogle Scholar
  7. Davis, C. A., and T. J. Galarneau Jr, 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686–704, doi: 10.1175/2008JAS2819.1.CrossRefGoogle Scholar
  8. Davis, C. A., D. A. Ahijevych, and S. B. Trier, 2002: Detection and prediction of warm season mid-tropospheric vortices by the rapid update cycle. Mon. Wea. Rev., 130, 24–42, doi: 10.1175/1520-0493(2002)130<0024:DAPOWS>2.0.CO;2.CrossRefGoogle Scholar
  9. Dong, G. H., S. Q. Han, Y. W. Liu, et al., 2013: Characteristic analysis on the mesoscale vortex system of an excessive heavy rain event. Torrential Rain and Disasters, 32, 97–104. (in Chinese)Google Scholar
  10. Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 1780–1807, doi: 10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2.CrossRefGoogle Scholar
  11. Ge, J. J., W. Zhong, and H. C. Lu, 2011: A diagnostic analysis of vorticity-divergence effects and the quasi-balanced flow in a mesoscale vortex during the process of flash-flood-producing rainstorm. Acta Meteor. Sinica, 69, 277–288. (in Chinese)Google Scholar
  12. Kuo, H.-C., R. T. Williams, J.-H. Chen, et al., 2001: Topographic effects on barotropic vortex motion: No mean flow. J. Atmos. Sci., 58, 1310–1327, doi: 10.1175/1520-0469(2001)058<1310:TEOBVM>2.0.CO;2.CrossRefGoogle Scholar
  13. Lai, H.-W., C. A. Davis, and B. J.-D. Jou, 2011: A subtropical Oceanic mesoscale convective vortex observed during SoWMEX/TiMREX. Mon. Wea. Rev., 139, 2367–2385, doi: 10.1175/2010MWR3411.1.CrossRefGoogle Scholar
  14. Lu, H. C., W. Cheng, M. Zhu, et al., 2002: Mechanism study meso-β scale vortex system of heavy rain in Meiyu front. J. PLA Univ. Sci. Technol., 3, 70–76. (in Chinese)Google Scholar
  15. Luo, Z. X., Z. A. Sun, and F. Ping, 2011: Statistical characteristics of mesoscale vortex effects on the track of a tropical cyclone. Chinese Phys. B, 20, 049201, doi: 10.1088/1674-1056/20/4/049201.CrossRefGoogle Scholar
  16. Ma, Y., X. Wang, and Z. Y. Tao, 1997: Geographic distribution and life cycle of mesoscale convective system in China and its vicinity. Prog. Nat. Sci., 7, 701–706. (in Chinese)Google Scholar
  17. Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077, doi: 10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.CrossRefGoogle Scholar
  18. Rogers, R. F., and J. M. Fritsch, 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129, 605–637, doi: 10.1175/1520-0493(2001)129<0605:SCFCDA>2.0.CO;2.CrossRefGoogle Scholar
  19. Shu, Y., and Y. N. Pan, 2010: Self-identification of mesoscale convective system from satellite infrared imagery. Journal of Nanjing University (Natural Sciences), 46, 337–348. (in Chinese)Google Scholar
  20. Shu, Y., Y. N. Pan, and J. X. Wang, 2013: Diurnal variation of MCSs over Asia and the western Pacific region. Acta Meteor. Sinica, 27, 435–445, doi: 10.1007/s13351-013-0305-6.CrossRefGoogle Scholar
  21. Sun, J. H., X. L. Zhang, L. L. Qi, et al., 2004: A study of vortex and its mesoscale convective system during China heavy rainfall experiment and study in 2002. Chinese J. Atmos. Sci., 28, 675–691. (in Chinese)Google Scholar
  22. Sun, J. H., S. X. Zhao, G. K. Xu, et al., 2010: Study on a mesoscale convective vortex causing heavy rainfall during the Meiyu season in 2003. Adv. Atmos. Sci., 27, 1193–1209, doi: 10.1007/s00376-009-9156-6.CrossRefGoogle Scholar
  23. Tao, Z. Y., H. Q. Wang, X. Wang, et al., 1998: A survey of meso- α-scale convective systems over China during 1995. Acta Meteor. Sinica, 56, 166–177. (in Chinese)Google Scholar
  24. Trier, S. B., and C. A. Davis, 2007: Mesoscale convective vortices observed during BAMEX. Part II: Influences on secondary deep convection. Mon. Wea. Rev., 135, 2051–2075, doi: 10.1175/MWR3399.1.CrossRefGoogle Scholar
  25. Xie, Y. B., 1978: Dynamical issues on moist baroclinic atmosphere. Heavy Rain Research Papers Collection. Jilin People’s Press, Changchun, 1–15. (in Chinese)Google Scholar
  26. Xie, Y. B., 1984: Observational and theoretical studies of the moist baroclinic atmosphere. Adv. Atmos. Sci., 1, 141–149, doi: 10.1007/BF02678127.CrossRefGoogle Scholar
  27. Zhang, Y. C., J. H. Sun, G. K. Xu, et al., 2013: Analysis on the structure of two mesoscale convective vortices over the Yangtze–Huai River basin. Climatic Environ. Res., 18, 271–287. (in Chinese)Google Scholar
  28. Zhong, R., L.-H. Zhong, L.-J. Hua, et al., 2014: A climatology of the southwest vortex during 1979–2008. Atmos. Oceanic Sci. Lett., 7, 577–583, doi: 10.1080/16742834.2014.11447227.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Nanjing Meteorological BureauNanjingChina
  2. 2.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  3. 3.Institute of Earth SciencesUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.School of Atmospheric SciencesNanjing UniversityNanjingChina
  5. 5.Key Laboratory for Mesoscale Severe Weather of Ministry of EducationNanjing UniversityNanjingChina

Personalised recommendations