Advertisement

Journal of Meteorological Research

, Volume 31, Issue 6, pp 987–1006 | Cite as

Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review

  • Tim Li
  • Bin Wang
  • Bo Wu
  • Tianjun Zhou
  • Chih-Pei Chang
  • Renhe Zhang
Review

Abstract

The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.

Keywords

western North Pacific anomalous anticyclone El Niño atmosphere–ocean interaction ENSO sea surface temperature Indian Ocean capacitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. A., I. Blade, M. Newman, et al., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.CrossRefGoogle Scholar
  2. Chang, C.-P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57, 2209–2224, doi: 10.1175/1520-0469(2000)057<2209:ATFTTT>2.0.CO;2.CrossRefGoogle Scholar
  3. Chang, C.-P., Y. S. Zhang, and T. Li, 2000a: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310–4325, doi: 10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.Google Scholar
  4. Chang, C.-P., Y. S. Zhang, and T. Li, 2000b: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 4326–4340, doi: 10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.Google Scholar
  5. Chen, J.-M., T. Li, and C.-F. Shih, 2007: Fall persistence barrier of sea surface temperature in the South China Sea associated with ENSO. J. Climate, 20, 158–172, doi: 10.1175/JCLI4000.1.CrossRefGoogle Scholar
  6. Chen, M.-C., T. Li, X.-Y. Shen, et al., 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 2201–2220, doi: 10.1175/JCLI-D-15-0547.1.CrossRefGoogle Scholar
  7. Chen, Z.-S., Z.-P. Wen, R. G. Wu, et al., 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 1027–1041, doi: 10.1007/s00382-015-2630-1.CrossRefGoogle Scholar
  8. Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 4143–4158, doi: 10.1175/JCLI4953.1.CrossRefGoogle Scholar
  9. Chou, C., 2004: Establishment of the low-level wind anomalies over the western North Pacific during ENSO development. J. Climate, 17, 2195–2212, doi: 10.1175/1520-0442(2004)017<2195:EOTLWA>2.0.CO;2.CrossRefGoogle Scholar
  10. Chung, P. H., C. H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 16, D13111, doi: 10.1029/2010JD015554.CrossRefGoogle Scholar
  11. Fu, C. B., and X. L. Teng, 1988: Climate anomalies in China associated with E1 Niño/Southern Oscillation. Chinese J. Atmos. Sci., 12, 133–141, doi: 10.3878/j.issn.1006-9895.1988.t1.11. (in Chinese)Google Scholar
  12. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.CrossRefGoogle Scholar
  13. Gong, D. Y., and C. H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, doi: 10.1029/2001GL014523.CrossRefGoogle Scholar
  14. Gu, D. J., T. Li, Z. P. Ji, et al., 2010: On the phase relations between the western North pacific, Indian, and Australian monsoons. J. Climate, 23, 5572–5589, doi: 10.1175/2010JCLI2761.1.CrossRefGoogle Scholar
  15. Ham, Y.-G., J.-S. Kug, J.-Y. Park, et al., 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 6, 112–116, doi: 10.1038/ngeo1686.CrossRefGoogle Scholar
  16. Hong, C.-C., T. Li, H. Lin, et al., 2010: Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 3563–3576, doi: 10.1175/2010JCLI3320.1.CrossRefGoogle Scholar
  17. Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.CrossRefGoogle Scholar
  18. Hu, Z. Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500-hPa height and global sea surface temperature. J. Geophys. Res., 102, 19403–19412, doi: 10.1029/97JD01052.CrossRefGoogle Scholar
  19. Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32, doi: 10.1007/BF02656915.CrossRefGoogle Scholar
  20. Jiang, X. A., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 3777–3795, doi: 10.1175/JCLI3516.1.CrossRefGoogle Scholar
  21. Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.CrossRefGoogle Scholar
  22. Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20, doi: 10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.CrossRefGoogle Scholar
  23. Lau, N.-C., and B. Wang, 2006: Interactions between the Asian monsoon and the El Niño/Southern Oscillation. The Asian Monsoon, Wang, B. Ed., Springer/Praxis Publishing, New York, 478–512.Google Scholar
  24. Lau, N. C., A. Leetmaa, and M. J. Nath, 2006: Attribution of atmospheric variations in the 1997–2003 period to SST anomalies in the Pacific and Indian Ocean basins. J. Climate, 19, 3607–3628, doi: 10.1175/JCLI3813.1.CrossRefGoogle Scholar
  25. Li, S. L., J. Lu, G. Huang, et al., 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088, doi: 10.1175/2008JCLI2433.1.CrossRefGoogle Scholar
  26. Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093–1102, doi: 10.1175/JAS3676.1.CrossRefGoogle Scholar
  27. Li, T., 2010: Monsoon climate variabilities. Climate Dynamics: Why Does Climate Vary? Sun, D. Z., and F. Bryan, Eds., American Geophysical Union, Washington DC, doi: 10.1029/2008GM000782.Google Scholar
  28. Li, T. 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers and Control, Oouchi, K., and H. Fudeyasu, Eds., Nova Science Publishers, Inc., Hauppauge, NY, 61–94.Google Scholar
  29. Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285–314.CrossRefGoogle Scholar
  30. Li, T., and P.-C. Hsu, 2017: Monsoon dynamics and its interactions with ocean. Fundamentals of Tropical Climate Dynamics, Springer International Publishing, Cham, 236 pp, doi: 10.1007/978-3-319-59597-9.Google Scholar
  31. Li, T., B. Wang, C.-P. Chang, et al., 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60, 2119–2135, doi: 10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.CrossRefGoogle Scholar
  32. Li, T., P. Liu, X. Fu, et al., 2006: Spatiotemporal structures and mechanisms of the tropospheric biennial oscillation in the Indo-Pacific warm ocean regions. J. Climate, 19, 3070–3087, doi: 10.1175/JCLI3736.1.CrossRefGoogle Scholar
  33. Li, T., B. Wang, and L. Wang, 2016: Comments on “Combination mode dynamics of the anomalous Northwest Pacific anticyclone”. J. Climate, 29, 4685–4693, doi: 10.1175/JCLI-D-15-0385.1.CrossRefGoogle Scholar
  34. Liu, J., B. Wang, and J. Yang, 2008: Forced and internal modes of variability of the East Asian summer monsoon. Climate of the Past, 4, 225–233, doi: 10.5194/cp-4-225-2008.CrossRefGoogle Scholar
  35. Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 27–50, doi: 10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2.CrossRefGoogle Scholar
  36. Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12, doi: 10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.CrossRefGoogle Scholar
  37. Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, London, 289 pp.Google Scholar
  38. Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384, doi: 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.CrossRefGoogle Scholar
  39. Roeckner, E., K. Arpe, L. Bengtsson, et al., 1996: The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate. Max-Planck-Institute for Meteorology Rep. 218, Max-Planck-Institut für Meteorologie, 90 pp. [Available online at http://www.mpimet. mpg.de/fileadmin/publikationen/Reports/]Google Scholar
  40. Rong, X. Y., R. H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chinese Sci. Bull., 55, 2458–2468, doi: 10.1007/s11434-010-3098-3.CrossRefGoogle Scholar
  41. Saravanan, R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 2177–2194, doi: 10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.CrossRefGoogle Scholar
  42. Shen, S., and K.-M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J. Meteor. Soc. Japan, 73, 105–124, doi: 10.2151/jmsj1965.73.1_105.CrossRefGoogle Scholar
  43. Stuecker, M. F., F.-F. Jin, A. Timmermann, et al., 2015: Combination mode dynamics of the anomalous Northwest Pacific anticyclone. J. Climate, 28, 1093–1111, doi: 10.1175/JCLI-D-14-00225.1.CrossRefGoogle Scholar
  44. Sui, C.-H., P. H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34, L11701, doi: 10.1029/2006GL029204.CrossRefGoogle Scholar
  45. Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, Chang, C.-P., and T. N. Krishramuti, Eds., Oxford University Press, Oxford, 60–92.Google Scholar
  46. Tao, S. Y., and Q. Y. Zhang, 1998: Response of the Asian winter and summer monsoon to ENSO events. Sci. Atmos. Sinica, 22, 399–407, doi: 10.3878/j.issn.1006-9895.1998.04.02. (in Chinese)Google Scholar
  47. Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812, doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.CrossRefGoogle Scholar
  48. Wang, B., and X. S. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian Oscillation. J. Climate, 11, 2116–2135, doi: 10.1175/1520-0442-11.8.2116.CrossRefGoogle Scholar
  49. Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658, doi: 10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.CrossRefGoogle Scholar
  50. Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252–3265, doi: 10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.CrossRefGoogle Scholar
  51. Wang, B., and T. Li, 2004: East Asian monsoon and ENSO interaction. East Asian Monsoon, C.-P. Chang, Ed., World Scientific Publishing, Singapore, 172-212.Google Scholar
  52. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  53. Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 1195–1211, doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.CrossRefGoogle Scholar
  54. Wang, B., Q. H. Ding, X. H. Fu, et al., 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi: 10.1029/2005GL02273412.CrossRefGoogle Scholar
  55. Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718–2722, doi: 10.1073/pnas.1214626110.CrossRefGoogle Scholar
  56. Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 1235–1248, doi: 10.1007/s00376-017-7016-3.CrossRefGoogle Scholar
  57. Watanabe, M., and F.-F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, doi: 10.1029/2001GL014318.Google Scholar
  58. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926, doi: 10.1002/qj.49711850705.CrossRefGoogle Scholar
  59. Webster, P. J., V. O. Magaña, T. N. Palmer, et al., 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14451–14510, doi: 10.1029/97JC02719.CrossRefGoogle Scholar
  60. Wu, R. G., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 3742–3758, doi: 10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.CrossRefGoogle Scholar
  61. Wu, R. G., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, doi: 10.1029/2007JD009316.Google Scholar
  62. Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 2992–3005, doi: 10.1175/2008JCLI2710.1.CrossRefGoogle Scholar
  63. Wu, B., T. Li, and T. Zhou, 2010a: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 2974–2986, doi: 10.1175/2010JCLI3300.1.CrossRefGoogle Scholar
  64. Wu, B., T. Li, and T. Zhou, 2010b: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 4807–4822, doi: 10.1175/2010JCLI3222.1.CrossRefGoogle Scholar
  65. Wu, B., T. J. Zhou, and T. Li, 2017a: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621–9635, doi: 10.1175/JCLID-16-0489.1.CrossRefGoogle Scholar
  66. Wu, B., T. J. Zhou, and T. Li, 2017b: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 9637–9650, doi: 10.1175/JCLI-D-16-0495.1.Google Scholar
  67. Wu, P., Y. H. Ding, and Y. J. Liu, 2017: A new study of El Niño impacts on summertime water vapor transport and rainfall in China. Acta Meteor. Sinica, 75, 371–383, doi: 10.11676/qxxb2017.033. (in Chinese)Google Scholar
  68. Xiang, B. Q., B. Wang, W. D. Yu, et al., 2013: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett., 40, 2349–2354, doi: 10.1002/grl.50431.CrossRefGoogle Scholar
  69. Xie, S.-P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi: 10.1175/2008JCLI2544.1.CrossRefGoogle Scholar
  70. Yang, J. L., Q. Y. Liu, S.-P. Xie, et al., 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi: 10.1029/2006GL028571.Google Scholar
  71. Yu, J. H., T. Li, Z. M. Tan, et al., 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865–877, doi: 10.1007/s00382-015-2618-x.CrossRefGoogle Scholar
  72. Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the’ 86/87 and’ 91/92 events. J. Meteor. Soc. Japan, 74, 49–62, doi: 10.2151/jmsj1965.74.1_49.CrossRefGoogle Scholar
  73. Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229–241, doi: 10.1007/BF02973084.CrossRefGoogle Scholar
  74. Zhang, R. H., Q. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 1124–1132, doi: 10.1007/s11430-016-9026-x.CrossRefGoogle Scholar
  75. Zhou, T. J., D. Y. Gong, J. Li, et al., 2009a: Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455–467, doi: 10.1127/0941-2948/2009/0396.CrossRefGoogle Scholar
  76. Zhou, T. J., R. C. Yu, J. Zhang, et al., 2009b: Why the western Pacific subtropical high has extended westward since the late 1970s? J. Climate, 22, 2199–2215, doi: 10.1175/2008JCLI2527.1.CrossRefGoogle Scholar
  77. Zhu, Z. W., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 7313–7327, doi: 10.1175/JCLI-D-16-0137.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Tim Li
    • 1
    • 2
  • Bin Wang
    • 1
    • 2
  • Bo Wu
    • 3
  • Tianjun Zhou
    • 3
    • 4
  • Chih-Pei Chang
    • 5
  • Renhe Zhang
    • 6
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  2. 2.International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Naval Postgraduate SchoolMontereyUSA
  6. 6.Institute of Atmospheric SciencesFudan UniversityShanghaiChina

Personalised recommendations