Journal of Meteorological Research

, Volume 31, Issue 5, pp 809–819 | Cite as

Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016

  • Junting Zhong
  • Xiaoye Zhang
  • Yaqiang Wang
  • Junying Sun
  • Yangmei Zhang
  • Jizhi Wang
  • Kaiyan Tan
  • Xiaojing Shen
  • Haochi Che
  • Lu Zhang
  • Zhouxiang Zhang
  • Xuefei Qi
  • Huarong Zhao
  • Sanxue Ren
  • Yang Li
Special Collection on the Heavy and Persistent Haze–Fog Episodes in Winter 2016 in the Beijing–Tianjin–Hebei Area of China
  • 22 Downloads

Abstract

Based on observations of urban mass concentration of fine particulate matter smaller than 2.5 μm in diameter (PM2.5), ground meteorological data, vertical measurements of winds, temperature, and relative humidity (RH), and ECMWF reanalysis data, the major changes in the vertical structures of meteorological factors in the boundary layer (BL) during the heavy aerosol pollution episodes (HPEs) that occurred in winter 2016 in the urban Beijing area were analyzed. The HPEs are divided into two stages: the transport of pollutants under prevailing southerly winds, known as the transport stage (TS), and the PM2.5 explosive growth and pollution accumulation period characterized by a temperature inversion with low winds and high RH in the lower BL, known as the cumulative stage (CS). During the TS, a surface high lies south of Beijing, and pollutants are transported northwards. During the CS, a stable BL forms and is characterized by weak winds, temperature inversion, and moisture accumulation. Stable atmospheric stratification featured with light/calm winds and accumulated moisture (RH > 80%) below 250 m at the beginning of the CS is closely associated with the inversion, which is strengthened by the considerable decrease in near-surface air temperature due to the interaction between aerosols and radiation after the aerosol pollution occurs. A significant increase in the PLAM (Parameter Linking Aerosol Pollution and Meteorological Elements) index is found, which is linearly related to PM mass change. During the first 10 h of the CS, the more stable BL contributes approximately 84% of the explosive growth of PM2.5 mass. Additional accumulated near-surface moisture caused by the ground temperature decrease, weak turbulent diffusion, low BL height, and inhibited vertical mixing of water vapor is conducive to the secondary aerosol formation through chemical reactions, including liquid phase and heterogeneous reactions, which further increases the PM2.5 concentration levels. The contribution of these reaction mechanisms to the explosive growth of PM2.5 mass during the early CS and subsequent pollution accumulation requires further investigation.

Key words

explosive growth of PM2.5 pollutant transport anomalous temperature inversion moisture accumulation light or calm winds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boucher, O., D. Randall, P. Artaxo, et al., 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–658. Online LinkGoogle Scholar
  2. Che, H., X. Y. Zhang, X. Xia, et al., 2015: Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. Disc., 15, 12715–12776, doi: 10.5194/acpd-15-12715-2015.CrossRefGoogle Scholar
  3. Chen, Y., A. Ebenstein, M. Greenstone, et al., 2013: Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA, 110, 12936–12941, doi: 10.1073/pnas.1300018110.CrossRefGoogle Scholar
  4. Cheng, Y., G. Zheng, W. Chao, et al., 2016: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv., 2, doi: 10.1126/sciadv.1601530.Google Scholar
  5. Ervens, B., B. J. Turpin, and R. J. Weber, 2011: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys., 11, 11069–11102, doi: 10.5194/acp-11-11069-2011.CrossRefGoogle Scholar
  6. Guo, S., M. Hu, M. L. Zamora, et al., 2014: Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA, 111, 17373–17378, doi: 10.1073/pnas.1419604111.CrossRefGoogle Scholar
  7. Hua, Y., S. Wang, J. Wang, et al., 2016: Investigating the impact of regional transport on PM2.5 formation using vertical observation during APEC 2014 Summit in Beijing. Atmos. Chem. Phys., 16, 15451–15460, doi: 10.5194/acp-16-15451-2016.CrossRefGoogle Scholar
  8. Huang, R.-J., Y. Zhang, C. Bozzetti, et al., 2014: High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218–222, doi: 10.1038/nature13774.Google Scholar
  9. Jia, Y., K. A. Rahn, K. He, et al., 2008: A novel technique for quantifying the regional component of urban aerosol solely from its sawtooth cycles. J. Geophys. Res. Atmos., 113, 6089–6098, doi: 10.1029/2008JD01038.Google Scholar
  10. Liu, Y., E. R. Gibson, J. P. Cain, et al., 2008: Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity. J. Phys. Chem. A, 112, 1561, doi: 10.1021/jp076169h.CrossRefGoogle Scholar
  11. Liu, X. G., J. Li, Y. Qu, et al., 2013: Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmos. Chem. Phys., 13, 4501–4514, doi: 10.5194/acp-13-4501-2013.CrossRefGoogle Scholar
  12. Pan, X. L., P. Yan, J. Tang, et al., 2009: Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city. Atmos. Chem. Phys., 9, 7519–7530, doi: 10.5194/acp-9-7519-2009.CrossRefGoogle Scholar
  13. Pilinis, C., J. H. Seinfeld, and D. Grosjean, 1989: Water content of atmospheric aerosols. Atmos. Environ., 23, 1601–1606, doi: 10.1016/0004-6981(89)90419-8.CrossRefGoogle Scholar
  14. Sun, Y., Q. Jiang, Z. Wang, et al., 2014: Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res. Atmos., 119, 4380–4398, doi: 10.1002/2014JD021641.CrossRefGoogle Scholar
  15. Tang, G., J. Zhang, X. Zhu, et al., 2016: Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys., 16, 2459–2475, doi: 10.5194/acp-16-2459-2016.CrossRefGoogle Scholar
  16. Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Elsevier, 483 pp.Google Scholar
  17. Wang, J. Z., S. Gong, X. Y. Zhang, et al., 2012: A parameterized method for air-quality diagnosis and its applications. Adv. Meteor., 3181–3190, doi: 10.1155/2012/238589.Google Scholar
  18. Wang, J., Y. Wang, H. Liu, et al., 2013: Diagnostic identification of the impact of meteorological conditions on PM2.5 concentrations in Beijing. Atmos. Environ., 81, 158–165, doi: 10.1016/j.atmosenv.2013.08.033.CrossRefGoogle Scholar
  19. Wang, Z. B., M. Hu, Z. J. Wu, et al., 2013: Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmos. Chem. Phys., 13, 10159–10170, doi: 10.5194/acpd-13-5165-2013.CrossRefGoogle Scholar
  20. Wang, H., J. An, L. Shen, et al., 2014: Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China. Sci. Total Environ., 490, 501–508, doi: 10.1016/j.scitotenv.2014.05.009.CrossRefGoogle Scholar
  21. Wang, J., S. Wang, J. Jiang, et al., 2014: Impact of aerosol–meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013. Environ. Res. Lett., 9, 094002, doi: 10.1088/1748-9326/9/9/094002.CrossRefGoogle Scholar
  22. Wang, X., J. Chen, J. Sun, et al., 2014: Severe haze episodes and seriously polluted fog water in Ji’nan, China. Sci. Total Environ., 493, 133–137, doi: 10.1016/j.scitotenv.2014.05.135.CrossRefGoogle Scholar
  23. Wang, Z., J. Li, Z. Wang, et al., 2014: Modeling study of regional severe hazes over mid–eastern China in January 2013 and its implications on pollution prevention and control. Sci. China Earth Sci., 57, 3–13, doi: 10.1007/s11430-013-4793-0.CrossRefGoogle Scholar
  24. Wang, H., M. Xue, X. Y. Zhang, et al., 2015: Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing–Jin–Ji (China) and its nearby surrounding region–Part 1: Aerosol distributions and meteorological features. Atmos. Chem. Phys., 15, 3257–3275, doi: 10.5194/acp-15-3257-2015.CrossRefGoogle Scholar
  25. Wang, G., R. Zhang, M. E. Gomez, et al., 2016: Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA, 113, 13630, doi: 10.1073/pnas.1616540113.CrossRefGoogle Scholar
  26. Wei, P., S. Y. Cheng, J. B. Li, et al., 2011: Impact of boundarylayer anticyclonic weather system on regional air quality. Atmos. Environ., 45, 2453–2463, doi: 10.1016/j.atmosenv.2011.01.045.CrossRefGoogle Scholar
  27. Zhang, X. Y., Y. Q. Wang, W. L. Lin, et al., 2009: Changes of atmospheric composition and optical properties over Beijing—2008 Olympic monitoring campaign. Bull. Amer. Meteor. Soc., 90, 1633, doi: 10.1175/2009BAMS2804.1.CrossRefGoogle Scholar
  28. Zhang, X. Y., Y. Q. Wang, T. Niu, et al., 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 11, 26571–26615, doi: 10.5194/acp-12-779-2012.CrossRefGoogle Scholar
  29. Zhang, X., J. Sun, Y. Wang, et al., 2013: Factors contributing to haze and fog in China. Chinese Sci. Bull., 58, 1178, doi: 10.1360/972013-150. (in Chinese)CrossRefGoogle Scholar
  30. Zhang, R. H., Q. Li, and R. N. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 26–35, doi: 10.1007/s11430-013-4774-3.CrossRefGoogle Scholar
  31. Zhang, R. Y., G. H. Wang, S. Guo, et al., 2015: Formation of urban fine particulate matter. Chemical Reviews, 115, 3803–3855, doi: 10.1021/acs.chemrev.5b00067.CrossRefGoogle Scholar
  32. Zhang, X. Y., J. Z. Wang, Y. Q. Wang, et al., 2015: Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmos. Chem. Phys., 15, 12935–12952, doi: 10.5194/acp-15-12935-2015.CrossRefGoogle Scholar
  33. Zheng, B., Q. Zhang, Y. Zhang, et al., 2015: Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys., 15, 2031–2049, doi: 10.5194/acp-15-2031-2015.CrossRefGoogle Scholar
  34. Zheng, G. J., F. K. Duan, H. Su, et al., 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983, doi: 10.5194/acp-15-2969-2015.CrossRefGoogle Scholar
  35. Zhu, T., J. Shang, and D. F. Zhao, 2011: The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Sci. China Chem., 54, 145–153, doi: 10.1007/s11426-010-4181-y.CrossRefGoogle Scholar
  36. Zhu, X., G. Tang, B. Hu, et al., 2016: Regional pollution and its formation mechanism over North China Plain: A case study with ceilometer observations and model simulations. J. Geophys. Res. Atmos., 121, 14574–14588, doi: 10.1002/2016JD025730.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Junting Zhong
    • 1
  • Xiaoye Zhang
    • 1
    • 3
  • Yaqiang Wang
    • 1
  • Junying Sun
    • 1
  • Yangmei Zhang
    • 1
  • Jizhi Wang
    • 1
  • Kaiyan Tan
    • 2
  • Xiaojing Shen
    • 1
  • Haochi Che
    • 1
  • Lu Zhang
    • 1
  • Zhouxiang Zhang
    • 1
  • Xuefei Qi
    • 1
  • Huarong Zhao
    • 2
  • Sanxue Ren
    • 2
  • Yang Li
    • 4
  1. 1.State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Integrated Ecological–Meteorological Observation and Experimental StationChinese Academy of Meteorological SciencesBeijingChina
  3. 3.Center for Excellence in Regional Atmospheric Environment, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  4. 4.Center for Atmosphere Watch and Service, Meteorological Observation CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations