Journal of Meteorological Research

, Volume 31, Issue 6, pp 1085–1095 | Cite as

Multi-scheme corrected dynamic–analogue prediction of summer precipitation in northeastern China based on BCC_CSM

  • Yihe Fang
  • Haishan Chen
  • Zhiqiang Gong
  • Fangshu Xu
  • Chunyu Zhao
Regular Articles


Based on summer precipitation hindcasts for 1991–2013 produced by the Beijing Climate Center Climate System Model (BCC_CSM), the relationship between precipitation prediction error in northeastern China (NEC) and global sea surface temperature is analyzed, and dynamic–analogue prediction is carried out to improve the summer precipitation prediction skill of BCC_CSM, through taking care of model historical analogue prediction error in the real-time output. Seven correction schemes such as the systematic bias correction, pure statistical correction, dynamic–analogue correction, and so on, are designed and compared. Independent hindcast results show that the 5-yr average anomaly correlation coefficient (ACC) of summer precipitation is respectively improved from –0.13/0.15 to 0.16/0.24 for 2009–13/1991–95 when using the equally weighted dynamic–analogue correction in the BCC_CSM prediction, which takes the arithmetical mean of the correction based on regional average error and that on grid point error. In addition, probabilistic prediction using the results from the multiple correction schemes is also performed and it leads to further improved 5-yr average prediction accuracy.


summer precipitation northeastern China sea surface temperature El Niño–Southern Oscillation Beijing Climate Center Climate System Model dynamic–analogue correction probabilistic prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cao, H. X., 1993: Self-memorization equation in atmospheric motion. Sci. China (Series B), 36, 845.Google Scholar
  2. Chou, J. F., 1986: Why should we combine the dynamics with statistics and how to combine. Plateau Meteor., 5, 367–372. (in Chinese)Google Scholar
  3. Fan, K., H. J. Wang, and Y. J. Choi, 2008: A physically-based statistical forecast model for the middle–lower reaches of the Yangtze River valley summer rainfall. Chinese Sci. Bull., 53, 602–609, doi: 10.1007/s11434-008-0083-1.CrossRefGoogle Scholar
  4. Fan, K., and H. J. Wang, 2009: A new approach to forecasting typhoon frequency over the western North Pacific. Wea. Forecasting, 24, 974–978, doi: 10.1175/2009WAF2222194.1.CrossRefGoogle Scholar
  5. Fan, K., and H. J. Wang, 2010: Seasonal prediction of summer temperature over Northeast China using a year-to-year incremental approach. Acta Meteor. Sinica, 24, 269–275.Google Scholar
  6. Fang, Y. H., Z. Q. Gong, and H. S. Chen, 2016: Objective identification research on China Northeast Cold Vortex precipitation period. Meteor. Mon., 42, 80–88, doi: 10.7519/j.issn.1000-0526.2016.01.010. (in Chinese)Google Scholar
  7. Feng, G. L., H. X. Cao, F. Y. Wei, et al., 2001: On area rainfall ensemble prediction and its application. J. Meteor. Res., 59, 206–212, doi: 10.3321/j.issn:0577-6619.2001.02.007. (in Chinese)Google Scholar
  8. Gao, H., and J. Gao, 2014: Increased influences of the SST along the Kuroshio in previous winter on the summer precipitation in northeastern China. Acta Oceanol. Sinica, 36, 27–33, doi: 10.3969/j.issn.0253-4193.2014.07.004. (in Chinese)Google Scholar
  9. Gong, Z. Q., J. H. Zhao, G. L. Feng, et al., 2015: Dynamic–statistics combined forecast scheme based on the abrupt decadal change component of summer precipitation in East Asia. Sci. China: Earth Sci., 58, 404–419, doi: 10.1007/s11430-014-4967-4. (in Chinese)CrossRefGoogle Scholar
  10. Gong, Z. Q., C. Hutin, and G. L. Feng, 2016: Methods for improving the prediction skill of summer precipitation over East Asia–West Pacific. Wea. Forecasting, 31, 1381–1392, doi: 10.1175/WAF-D-16-0007.1.CrossRefGoogle Scholar
  11. He, J. H., Z. W. Wu, L. Qi, and A. J. Jiang, 2006: Relationships among the Northern Hemisphere Annual Mode, the Northeast Cold Vortex and the summer rainfall in Northeast China. J. Meteor. & Environ., 22, 1–5, doi: 10.3969/j.issn.1673-503X.2006.01.001. (in Chinese)Google Scholar
  12. Huang, J. P., Y. H. Yi, S. W. Wang, et al., 1993: An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution. Quart. J. Roy. Meteor. Soc., 119, 547–565, doi: 10.1002/qj.49711951111.CrossRefGoogle Scholar
  13. Kim, H. M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701, doi: 10.1029/2012GL051644.Google Scholar
  14. MacLeod, D. A., C. Caminade, and A. P. Morse, 2012: Useful decadal climate prediction at regional scales? A look at the ENSEMBLES stream 2 decadal hindcasts. Environ. Res. Lett., 7, 044012, doi: 10.1088/1748-9326/7/4/044012.CrossRefGoogle Scholar
  15. Mo, R. P., and D. M. Straus, 2002: Statistical dynamical seasonal prediction based on principal component regression of GCM ensemble integrations. Mon. Wea. Rev., 130, 2167–2187, doi: 10.1175/1520-0493(2002)130<2167:SDSPBO>2.0.CO;2.CrossRefGoogle Scholar
  16. Qiang, X. M., and X. Q. Yang, 2013: Relationship between the first rainy season precipitation anomaly in South China and the sea surface temperature anomaly in the Pacific. Chinese J. Geophys., 56, 2583–2593, doi: 10.6038/cjg20130808. (in Chinese)Google Scholar
  17. Qiu, C. J., and J. F. Chou, 1989: The analogic–dynamical method of forecasting weather. Sci. Atmos. Sinica, 13, 22–28, doi: 10.3878/j.issn.1006-9895.1989.01.03. (in Chinese)Google Scholar
  18. Ren, H. L., and J. F. Chou, 2005: Analogue correction method of errors by combining both statistical and dynamical methods together. Acta Meteor. Sinica, 63, 988–993, doi: 10.11676/qxxb2005.094. (in Chinese)Google Scholar
  19. Ren, H. L., and J. F. Chou, 2007: Strategy and methodology of dynamical analogue prediction. Sci. China Earth Sci., 50, 1589–1599, doi: 10.1007/s11430-007-0109-6.CrossRefGoogle Scholar
  20. Shen, B. Z., Z. D. Lin, R. Y. Lu, et al., 2011: Circulation anomalies associated with interannual variation of early- and latesummer precipitation in Northeast China. Sci. China Earth Sci., 54, 1095–1104, doi: 10.1007/s11430-011-4173-6.CrossRefGoogle Scholar
  21. Smith, D. M., S. Cusack, A. W. Colman, et al., 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796–799, doi: 10.1126/science.1139540.CrossRefGoogle Scholar
  22. Tippett, M. K., L. Goddard, and A. G. Barnston, 2005: Statistical–dynamical seasonal forecasts of Central-Southwest Asian winter precipitation. J. Climate, 18, 1831–1843, doi: 10.1175/JCLI3371.1.CrossRefGoogle Scholar
  23. Van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A, 314–324, doi: 10.3402/tellusa.v46i3.15481.CrossRefGoogle Scholar
  24. van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, et al., 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 1263–1280, doi: 10.1007/s00382-012-1313-4.CrossRefGoogle Scholar
  25. Wang, Q. G., G. L. Feng, Z. H. Zheng, et al., 2001: A study of the objective and quantifiable forecasting based on optimal factors combinations in precipitation in the middle and lower reaches of the Yangtze River in summer. Chinese J. Atmos. Sci., 35, 287–297, doi: 10.3878/j.issn.1006-9895.2011.02.08. (in Chinese)Google Scholar
  26. Wang, H. J., and K. Fan, 2009: A new scheme for improving the seasonal prediction of summer precipitation anomalies. Wea. Forecasting, 24, 548–554, doi: 10.1175/2008WAF2222171.1.CrossRefGoogle Scholar
  27. Wu, B. Y., R. H. Zhang, and R. D’Arrigo, 2008: Arctic dipole an-omaly and summer rainfall in Northeast China. Chinese. Sci. Bull., 53, 2222–2229, doi: 10.1007/s11434-008-0229-1.CrossRefGoogle Scholar
  28. Wu, T. W., L. C. Song, X. W. Liu, et al., 2013: Progress in developing the short-range operational climate prediction system of China National Climate Center. J. Appl. Meteor. Sci., 24, 533–543, doi: 10.3969/j.issn.1001-7313.2013.05.003. (in Chinese)Google Scholar
  29. Xiong, K. G., G. L. Feng, J. P. Huang, et al., 2011: Analogue-dynamical prediction of monsoon precipitation in Northeast China based on dynamic and optimal configuration of multiple predictors. J. Meteor. Res., 25, 316–326, doi: 10.1007/s13351-011-0307-1.Google Scholar
  30. Yang, J., J. H. Zhao, Z. H. Zheng, et al., 2012: Estimating the prediction errors of dynamical climate model on the basis of prophase key factors in North China. Chinese J. Atmos. Sci., 36, 11–22, doi: 10.3878/j.issn.1006-9895.2012.01.02. (in Chinese)Google Scholar
  31. Zhao, J. H., J. Yang, Z. Q. Gong, et al., 2015: Analysis of and discussion about dynamic–statistical climate prediction for summer rainfall of 2013 in China. Adv. Met. S.&T., 5, 24–28, doi: 10.3969/j.issn.2095-1973.2015.02.004. (in Chinese)Google Scholar
  32. Zhi, X. F., T. Peng, and G. Li, et al., 2014: Advances in multimodel ensemble probabilistic prediction. Trans. Atmos. Sci., 37, 248–256, doi: 10.3969/j.issn.1674-7097.2014.02.016. (in Chinese)Google Scholar
  33. Zong, H. F., and L. T. Chen, 2013: Characteristics of the atmospheric circulation and sea surface temperature for different modes of intraseasonal variation of summer monsoon rain belt in eastern China. Chinese J. Atmos. Sci., 37, 1072–1082, doi: 10.3878/j.issn.1006-9895.2013.12069. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yihe Fang
    • 1
    • 2
  • Haishan Chen
    • 1
  • Zhiqiang Gong
    • 3
  • Fangshu Xu
    • 4
  • Chunyu Zhao
    • 1
    • 2
  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory on Climate and Environment Change, and School of Atmospheric SciencesNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Regional Climate Center of ShenyangShenyangChina
  3. 3.Laboratory for Climate Studies and Climate Monitoring and Diagnose, National Climate CenterChina Meteorological AdministrationBeijingChina
  4. 4.Liaoning Meteorological Service CenterShenyangChina

Personalised recommendations