Journal of Meteorological Research

, Volume 31, Issue 6, pp 1161–1166 | Cite as

Urban heat island investigations in Arctic cities of northwestern Russia

  • Oleg I. Shumilov
  • Elena A. Kasatkina
  • Alexander G. Kanatjev
Regular Articles
  • 35 Downloads

Abstract

Urban microclimate peculiarities in two Arctic cities in northwestern Russia—Kirovsk (67.62°N, 33.67°E) and Apatity (67.57°N, 33.38°E)—were investigated by using mobile temperature records. The experiment was carried out in and around Apatity and Kirovsk in February 2014 and December 2016. The DS18B20 digital thermometer was installed on the roof of a car (height: approximately 1.2 m) to measure and record temperature variations automatically. In addition to the digital thermometer, the car was also equipped with an onboard global positioning system, allowing every temperature measurement to be referenced with an altitude and a latitude/longitude position. The possibility of urban heat island formation in these polar cities, above the Arctic Circle, was studied. Our analysis indicated that on 11 February 2014, the temperature varied in accordance with the background environmental lapse rate (–0.0045°C m–1), and nearly corresponded to it (–0.0165°C m–1) on 12 February 2014. On 6 December 2016, a strong local temperature inversion with a positive value of 0.032°C m–1 was detected, seemingly caused by the formation of a cold air pool in the valley near Kirovsk. It was found that the temperature variations within and outside these cities are strongly influenced by local topographic effects and the physical conditions of the atmospheric boundary layer.

Keywords

urban microclimate topo-climate urban heat island mobile temperature measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman, L., J. E. Thornes, and A. V. Bradley, 2001: Modelling of road surface temperature from a geographical parameter database. Part 1: Statistical. Meteor. Appl., 8, 409–419, doi: 10.1017/S1350482701004030.CrossRefGoogle Scholar
  2. Clements, C. B., C. D. Whiteman, and J. D. Horel, 2003: Cold-airpool structure and evolution in a mountain basin: Peter Sinks, Utah. J. Appl. Meteor., 42, 752–768, doi: 10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2.CrossRefGoogle Scholar
  3. Demin, V. I., A. P. Antsyferova, and O. I. Mokrotovarova, 2015: Changes of the air temperature in Murmansk since the 19th century. Herald of the Kola Science Centre of the Russian Academy of Sciences, 24, 183–184.Google Scholar
  4. Hinkel, K. M., F. E. Nelson, A. E. Klene, et al., 2003: The urban heat island in winter at Barrow, Alaska. Int. J. Climatol., 23, 1889–1905, doi: 10.1002/(ISSN)1097-0088.CrossRefGoogle Scholar
  5. Jones, P. D., D. H. Lister, and Q. Li, 2008: Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res., 113, D16122, doi: 10.1029/2008JD009916.CrossRefGoogle Scholar
  6. Khaikine, M. N., I. N. Kuznetsova, E. N. Kadygrov, et al., 2006: Investigation of temporal-spatial parameters of an urban heat island on the basis of passive microwave remote sensing. Theor. Appl. Climatol., 84, 161–169, doi: 10.1007/s00704-005-0154-z.CrossRefGoogle Scholar
  7. Kim, Y. H., and J. J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor., 41, 651–659, doi: 10.1175/1520-0450(2002)041<0651:MUHIII>2.0.CO;2.CrossRefGoogle Scholar
  8. Konstantinov, P. I., M. Y. Grishchenko, and M. I. Varentsov, 2015: Mapping urban heat islands of Arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast). Izvestiya Atmos. Oceanic Phys., 51, 992–998, doi: 10.1134/S000143381509011X.CrossRefGoogle Scholar
  9. Magee, N., J. Curtis, and G. Wendler, 1999: The urban heat island effect at Fairbanks, Alaska. Theor. Appl. Climatol., 64, 39–47, doi: 10.1007/s007040050109.CrossRefGoogle Scholar
  10. McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, L09705, doi: 10.1029/2010GL042845.CrossRefGoogle Scholar
  11. Oke, T. R., 1987: Boundary Layer Climates. 2nd Ed., Routledge, New York, 435 pp.Google Scholar
  12. Peng, S. S., S. L. Piao, P. Ciais, et al., 2012: Surface urban heat island across 419 global big cities. Environ. Sci. Technol., 46, 696–703, doi: 10.1021/es2030438.CrossRefGoogle Scholar
  13. Ren, G. Y., Y. H. Ding, and G. L. Tang, 2017: An overview of mainland China temperature change research. J. Meteor. Res., 31, 3–16, doi: 10.1007/s13351-017-6195-2.CrossRefGoogle Scholar
  14. Rizwan, A. M., L. Y. C. Dennis, and C. Liu, 2008: A review on the generation, determination, and mitigation of Urban Heat Island. J. Environ. Sci., 20, 120–128, doi: 10.1016/S1001-0742(08)60019-4.CrossRefGoogle Scholar
  15. Satterthwaite, D., G. McGranahan, and C. Tacoli, 2010: Urbanization and its implications for food and farming. Philos. Trans. Roy. Soc. B Biol. Sci., 365, 2809–2820, doi: 10.1098/rstb.2010.0136.CrossRefGoogle Scholar
  16. Sheridan, P., S. Smith, A. Brown, et al., 2010: A simple heightbased correction for temperature downscaling in complex terrain. Meteor. Appl., 17, 329–339.Google Scholar
  17. Sun, Y., X. B. Zhang, G. Y. Ren, et al., 2016: Contribution of urbanization to warming in China. Nat. Climate Change, 6, 706–709, doi: 10.1038/nclimate2956.CrossRefGoogle Scholar
  18. United Nations Framework Convention on Climate Change (UNFCCC), 2015: Paris Agreement. [Available online at http://unfccc.int/documentation/documents/advanced_search/items/6911.php?priref=600 008831] [Accessed on May 10, 2017].Google Scholar
  19. Zhang, H., Z.-F. Qi, X.-Y. Ye, et al., 2013: Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr., 44, 121–133, doi: 10.1016/j.apgeog.2013.07.021.CrossRefGoogle Scholar
  20. Zhou, D. C., S. Q. Zhao, S. G. Liu, et al., 2014: Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ., 152, 51–61, doi: 10.1016/j.rse.2014.05.017.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Oleg I. Shumilov
    • 1
  • Elena A. Kasatkina
    • 1
  • Alexander G. Kanatjev
    • 1
  1. 1.Polar Geophysical InstituteApatityRussia

Personalised recommendations