Journal of Meteorological Research

, Volume 31, Issue 6, pp 1062–1069 | Cite as

Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing–Tianjin–Hebei area

  • Jianjun He
  • Sunling Gong
  • Hongli Liu
  • Xingqin An
  • Ye Yu
  • Suping Zhao
  • Lin Wu
  • Congbo Song
  • Chunhong Zhou
  • Jie Wang
  • Chengmei Yin
  • Lijuan Yu
Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016 in the Beijing-Tianjin-Hebei Area of China
  • 38 Downloads

Abstract

To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province—an area called Jing–Jin–Ji (JJJ, hereinafter)—in December 2013–16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m–3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013–16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.

Keywords

particulate matter pollution local meteorological conditions circulation types Siberian high 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially supported by the Innovation Team for Haze–fog Observation and Forecasts of the China Meteorological Administration. The authors would like to thank the two anonymous reviewers for their valuable suggestions.

References

  1. An, X. Q., H. C. Zuo, and L. J. Chen, 2007: Atmospheric environmental capacity of SO2 in winter over Lanzhou in China: A case study. Adv. Atmos. Sci., 24, 688–699.CrossRefGoogle Scholar
  2. An, X. Q., Y. Tao, S. Q. Mi, et al., 2015: Association between PM10 and respiratory hospital admissions in different seasons in heavily polluted Lanzhou city. J. Environ. Health, 77, 64–71.Google Scholar
  3. Chang, L. Y., J. M. Xu, X. X. Tie, et al., 2016: Impact of the 2015 El Nino event on winter air quality in China. Scientific Reports, 6, 34275, doi: 10.1038/srep34275.CrossRefGoogle Scholar
  4. Chen, H. P., and H. J. Wang, 2015: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res. Atmos., 120, 5895–5909, doi: 10.1002/2015JD023225.CrossRefGoogle Scholar
  5. Chen, Y., C. S. Zhao, Q. Zhang, et al., 2009: Aircraft study of mountain Chimney effect of Beijing, China. J. Geophys. Res., 114, D08306, doi: 10.1029/2008JD010610.Google Scholar
  6. Chen, Y., Y. F. Cheng, S. Nordmann, et al., 2016: Evaluation of the size segregation of elemental carbon (EC) emission in Europe: Influence on the simulation of EC long-range transportation. Atmos. Chem. Phys., 16, 1823–1835, doi: 10.5194/acp-16-1823-2016.CrossRefGoogle Scholar
  7. Chen, Z. H., S. Y. Cheng, J. B. Li, et al., 2008: Relationship between atmospheric pollution processes and synoptic pres-sure patterns in northern China. Atmos. Environ., 42, 6078–6087, doi: 10.1016/j.atmosenv.2008.03.043.CrossRefGoogle Scholar
  8. Gao, Y., X. Liu, C. Zhao, et al., 2011: Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games. Atmos. Chem. Phys., 11, 12437–12451, doi: 10.5194/acp-11-12437-2011.CrossRefGoogle Scholar
  9. He, J. J., Y. Yu, Y. C. Xie, et al., 2016a: Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality. Water, Air & Soil Pollution, 227, 235, doi: 10.1007/s11270-016-2930-z.CrossRefGoogle Scholar
  10. He, J. J., Y. Yu, N. Liu, et al., 2016b: Impact of meteorological conditions and pollutant emissions on winter air quality in Lanzhou. Plateau Meteor., 35, 1577–1583, doi: 10.7522/j.issn.1000-0534.2015.00087. (in Chinese)Google Scholar
  11. He, J. J., L. Wu, H. J. Mao, et al., 2016c: Impacts of meteorological conditions on air quality in urban Langfang, Hebei Province. Res. Environ. Sci., 29, 791–799, doi: 10.13198/j.issn.1001-6929.2016.06.02. (in Chinese)Google Scholar
  12. He, J. J., L. Wu, H. J. Mao, et al., 2016d: Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing. Part 2: Impact of vehicle emission on urban air quality. Atmos. Chem. Phys., 16, 3171–3184, doi: 10.5194/acp-16-3171-2016.CrossRefGoogle Scholar
  13. He, J. J., S. L. Gong, Y. Yu, et al., 2017a: Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut., 223, 484–496, doi: 10.1016/j.envpol.2017.01.050.CrossRefGoogle Scholar
  14. He, J. J., H. J. Mao, S. L. Gong, et al., 2017b: Investigation of particulate matter regional transport in Beijing based on numerical simulation. Aerosol Air Qual. Res., 17, 1181–1189, doi: 10.4209/aaqr.2016.03.0110.CrossRefGoogle Scholar
  15. Hien, P. D., P. D. Loc, and N. V. Dao, 2011: Air pollution episodes associated with East Asian winter monsoons. Sci. Total Environ., 409, 5063–5068, doi: 10.1016/j.scitotenv.2011.08.049.CrossRefGoogle Scholar
  16. Hu, J. L., Y. G. Wang, Q. Ying, et al., 2014: Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ., 95, 598–609, doi: 10.1016/j.atmosenv.2014.07.019.CrossRefGoogle Scholar
  17. Huth, R., 1996: An intercomparison of computer-assisted circulation classification methods. Int. J. Climatol., 16, 893–922, doi: 10.1002/(SICI)1097-0088(199608)16:8<893::AID-JOC51>3.0.CO;2-Q.CrossRefGoogle Scholar
  18. Jeong, J. H., T. H. Ou, H. W. Linderholm, et al., 2011: Recent recovery of the Siberian high intensity. J. Geophys. Res., 116, D23102, doi: 10.1029/2011JD015904.Google Scholar
  19. Jia, B., Y. Wang, Y. Yao, et al., 2015: A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China. Atmos. Chem. Phys., 15, 11919–11929, doi: 10.5194/acp-15-11919-2015.CrossRefGoogle Scholar
  20. Lee, C. C., T. J. Ballinger, and N. A. Domino, 2012: Utilizing map pattern classification and surface weather typing to relate climate to the air quality index in Cleveland, Ohio. Atmos. Environ., 63, 50–59, doi: 10.1016/j.atmosenv.2012.09.024.CrossRefGoogle Scholar
  21. Liu, D., and S. C. Gao, 2011: Determining the number of clusters in K-means clustering algorithm. Silicon Valley, 38–39. (in Chinese)Google Scholar
  22. Liu, T. T., S. L. Gong, J. J. He, et al., 2017: Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China’s Jing–Jin–Ji area. Atmos. Chem. Phys., 17, 2971–2980, doi: 10.5194/acp-17-2971-2017.CrossRefGoogle Scholar
  23. National Bureau of Statistics and Ministry of Environmental Protection, 2015: China Statistical Yearbook–2015. China Statistics Press, Beijing. (in Chinese)Google Scholar
  24. Niu, F., Z. Q. Li, C. Li, et al., 2010: Increase of wintertime fog in China: Potential impacts of weakening of the eastern Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res., 115, D00K20, doi: 10.1029/2009JD013484.CrossRefGoogle Scholar
  25. Pearce, J. L., J. Beringer, N. Nicholls, et al., 2011: Quantifying the influence of local meteorology on air quality using generalized additive models. Atmos. Environ., 45, 1328–1336, doi: 10.1016/j.atmosenv.2010.11.051.CrossRefGoogle Scholar
  26. Song, C. B., J. J. He, L. Wu, et al., 2017: Health burden attributable to ambient PM2.5 in China. Environ. Pollut., 223, 575–586, doi: 10.1016/j.envpol.2017.01.060.CrossRefGoogle Scholar
  27. Tai, A. P. K., L. J. Mickley, and D. J. Jacob., 2010: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ., 44, 3976–3984, doi: 10.1016/j.atmosenv.2010.06.060.CrossRefGoogle Scholar
  28. Wang, Y. Q., X. Y. Zhang, J. Y. Sun, et al., 2015: Spatial and temporal variations of the concentrations of PM10, PM2.5, and PM1 in China. Atmos. Chem. Phys., 15, 13585–13598, doi: 10.5194/acp-15-13585-2015.CrossRefGoogle Scholar
  29. Wu, P., Y. H. Ding, and Y. J. Liu, 2017: Atmospheric circulation and dynamic mechanism for persistent haze events in the Beijing–Tianjin–Hebei region. Adv. Atmos. Sci., 34, 429–440, doi: 10.1007/s00376-016-6158-z.CrossRefGoogle Scholar
  30. Yang, Y., H. Liao, and S. J. Luo, 2016: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res., 121, 13050–13065, doi: 10.1002/2016JD025136.Google Scholar
  31. Zhang, J. P., T. Zhu, Q. H. Zhang, et al., 2012: The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos. Chem. Phys., 12, 5031–5051, doi: 10.5194/acp-12-5031-2012.CrossRefGoogle Scholar
  32. Zhang, Q., and H. Y. Li, 2011: A study of the relationship between air pollutants and inversion in the ABL over the city of Lanzhou. Adv. Atmos. Sci., 28, 879–886, doi: 10.1007/s00376-010-0079-z.CrossRefGoogle Scholar
  33. Zhao, S. P., Y. Yu, D. Y. Yin, et al., 2016: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int., 86, 92–106, doi: 10.1016/j.envint.2015.11.003.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jianjun He
    • 1
  • Sunling Gong
    • 1
  • Hongli Liu
    • 1
  • Xingqin An
    • 1
  • Ye Yu
    • 2
  • Suping Zhao
    • 2
  • Lin Wu
    • 3
  • Congbo Song
    • 3
  • Chunhong Zhou
    • 1
  • Jie Wang
    • 4
  • Chengmei Yin
    • 5
  • Lijuan Yu
    • 5
  1. 1.State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  3. 3.The College of Environmental Science & EngineeringNankai UniversityTianjinChina
  4. 4.Hanzhou Zhenqi Environmental Protection S&T Co.HangzhouChina
  5. 5.Jinan Meteorological BureauJinanChina

Personalised recommendations