Journal of Meteorological Research

, Volume 31, Issue 5, pp 890–905 | Cite as

Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia

Regular Articles
  • 19 Downloads

Abstract

In this study, a merged dataset constructed from Tropical Rainfall Measuring Mission precipitation radar rain products and Integrated Global Radiosonde Archive data is used to investigate the thermal structural characteristics of convective and stratiform precipitation in the rainy season (May–August) of 1998–2012 over East Asia. The results show that the storm tops for convective precipitation are higher than those for stratiform precipitation, because of the more unstable atmospheric motions for convective precipitation. Moreover, the storm tops are higher at 1200 UTC than at 0000 UTC over land regions for both convective and stratiform precipitation, and vice versa for ocean region. Additionally, temperature anomaly patterns inside convective and stratiform precipitating clouds show a negative anomaly of about 0–2 K, which results in cooling effects in the lower troposphere. This cooling is more obvious at 1200 UTC for stratiform precipitation. The positive anomaly that appears in the middle troposphere is more than 2 K, with the strongest warming at 300 hPa. Relative humidity anomaly patterns show a positive anomaly in the middle troposphere (700–500 hPa) prior to the occurrence of the two types of precipitation, and the increase in moisture is evident for stratiform precipitation.

Key words

vertical structure of precipitation atmospheric stability temperature anomaly relative humidity anomaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. K., and E. P. Souza, 2009: CAPE and convective events in the southwest during the North American monsoon. Mon. Wea. Rev., 137, 83–98, doi: 10.1175/2008MWR2502.1.CrossRefGoogle Scholar
  2. Alexeev, V. A., I. Esau, I. V. Polyakov, et al., 2012: Vertical structure of recent Arctic warming from observed data and reanalysis products. Climatic Change, 111, 215–239, doi: 10.1007/s10584-011-0192-8.CrossRefGoogle Scholar
  3. Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790–2810, doi: 10.1175/MWRD-11-00006.1.CrossRefGoogle Scholar
  4. Chen, F. J., Y. F. Fu, P. Liu, et al., 2016: Seasonal variability of storm top altitudes in the tropics and subtropics observed by TRMM PR. Atmos. Res., 169, 113–126, doi: 10.1016/j.atmosres.2015.09.017.CrossRefGoogle Scholar
  5. Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidence. Int. J. Climatol., 28, 1139–1161, doi: 10.1002/joc.1615.CrossRefGoogle Scholar
  6. Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 53–68, doi: 10.1175/JCLI3594.1.CrossRefGoogle Scholar
  7. Feng, S., Y. F. Fu, and Q. N. Xiao, 2012: Trends in the global tropopause thickness revealed by radiosondes. Geophys. Res. Lett., 39, L20706, doi: 10.1029/2012GL053460.CrossRefGoogle Scholar
  8. Folkins, I., 2013: The melting level stability anomaly in the tropics. Atmos. Chem. Phys., 13, 1167–1176, doi: 10.5194/acp-13-1167-2013.CrossRefGoogle Scholar
  9. Folkins, I., S. Fueglistaler, G. Lesins, et al., 2008: A low-level circulation in the tropics. J. Atmos. Sci., 65, 1019–1034, doi: 10.1175/2007JAS2463.1.CrossRefGoogle Scholar
  10. Fu, Y. F., and G. S. Liu, 2003: Precipitation characteristics in midlatitude East Asia as observed by TRMM PR and TMI. J. Meteor. Soc. Japan Ser. II, 81, 1353–1369, doi: 10.2151/jmsj.81.1353.CrossRefGoogle Scholar
  11. Fu, Y. F., R. C. Yu, Y. P. Xu, et al., 2003: Analysis on precipitation structures of two heavy rain cases by using TRMM PR and IMI. Acta Meteor. Sinica, 61, 421–431, doi: 10.3321/j.issn:0577-6619.2003.04.004. (in Chinese)Google Scholar
  12. Fu, Y. F., J. Y. Feng, H. F. Zhu, et al., 2005: Structures of a thermal convective precipitation system in controlling of the western subtropical Pacific high. Acta Meteor. Sinica, 63, 750–761, doi: 10.3321/j.issn:0577-6619.2005.05.019. (in Chinese)Google Scholar
  13. Fu, Y. F., R. C. Yu, C. G. Cui, et al., 2007: The structure characteristics of precipitating clouds over East Asia Based on TRMM measurements. Torrent. Rain Disast., 26, 9–20. (in Chinese)Google Scholar
  14. Fu, Y. F., A. M. Zhang, Y. Liu, et al., 2008: Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM precipitation radar. Acta Meteor. Sinica, 66, 730–746. (in Chinese)Google Scholar
  15. Fu, Y. F., A. Q. Cao, T. Y. Li, et al., 2012: Climatic characteristics of the storm top altitude for the convective and stratiform precipitation in summer Asia based on measurements of the TRMM precipitation radar. Acta Meteor. Sinica, 70, 436–451, doi: 10.11676/qxxb2012.037. (in Chinese)Google Scholar
  16. Fu, Y. F., Q. Liu, Y. Gao, et al., 2013: A feasible method for merging the TRMM microwave imager and precipitation radar data. J. Quant. Spectr. Radiat. Transf., 122, 155–169, doi: 10.1016/j.jqsrt.2012.08.028.CrossRefGoogle Scholar
  17. Fu, Y. F., X. Pan, Y. J. Yang, et al., 2017: Climatological characteristics of summer precipitation over East Asia measured by TRMM PR: A review. J. Meteor. Res., 31, 142–159, doi: 10.1007/s13351-017-6156-9.CrossRefGoogle Scholar
  18. Guo, Y. J., and Y. H. Ding, 2009: Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series. J. Climate, 22, 1037–1051, doi: 10.1175/2008JCLI2480.1.CrossRefGoogle Scholar
  19. Houze, Jr. R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox. Bull. Amer. Meteor. Soc., 78, 2179–2196, doi: 10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.CrossRefGoogle Scholar
  20. Houze, Jr. R. A., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Quart. J. Roy. Meteor. Soc., 133, 1389–1411, doi: 10.1002/qj.106.Google Scholar
  21. Iturrioz, I., E. Hernández, P. Ribera, et al., 2007: Instability and its relation to precipitation over the eastern Iberian Peninsula. Adv. Geosci., 10, 45–50, doi: 10.5194/adgeo-10-45-2007.CrossRefGoogle Scholar
  22. Juneng, L., and F. T. Tangang, 2005: Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dyn., 25, 337–350, doi: 10.1007/s00382-005-0031-6.CrossRefGoogle Scholar
  23. Kummerow, C., W. Barnes, T. Kozu, et al., 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817, doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.CrossRefGoogle Scholar
  24. Lang, S., W. K. Tao, J. Simpson, et al., 2003: Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42, 505–527, doi: 10.1175/1520-0450(2003)042<0505:MOCSPP>2.0.CO;2.CrossRefGoogle Scholar
  25. Li, R., Q. L. Min, X. Q. Wu, et al, 2013: Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes. J. Quant. Spectr. Radiat. Transf., 122, 47–63, doi: 10.1016/j.jqsrt.2012.11.029.CrossRefGoogle Scholar
  26. Li, W. B., Z. J. Liu, and C. Luo, 2012: Characteristics of the synoptic time scale variability over the South China Sea based on Tropical Rainfall Measuring Mission. Meteor. Atmos. Phys., 115, 163–171, doi: 10.1007/s00703-011-0174-4.CrossRefGoogle Scholar
  27. Liu, G. S., and Y. F. Fu, 2001: The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J. Meteor. Soc. Japan, 79, 131–143, doi: 10.2151/jmsj.79.131.CrossRefGoogle Scholar
  28. Liu, P., and Y. F. Fu, 2010: Climatic characteristics of summer convective and stratiform precipitation in southern China based on measurements by TRMM precipitation radar. Chinese J. Atmos. Sci., 34, 802–814. (in Chinese)Google Scholar
  29. Liu, P., C. Y. Li, Y. Wang, et al., 2013: Climatic characteristics of convective and stratiform precipitation over the tropical and subtropical areas as derived from TRMM PR. Sci. China Earth Sci., 56, 375–385, doi: 10.1007/s11430-012-4474-4.CrossRefGoogle Scholar
  30. Liu, Y. J., Y. H. Ding, and Y. L. Song, 2005: The moisture transport and moisture budget over the South China Sea before and after the summer monsoon onset in 1998. J. Trop. Meteor., 21, 55–62. (in Chinese)Google Scholar
  31. Lu, D. R., Y. J. Yang, and Y. F. Fu, 2016: Interannual variability of summer monsoon convective and stratiform precipitations in East Asia during 1998–2013. Int. J. Climatol., 36, 3507–3520, doi: 10.1002/joc.4572.CrossRefGoogle Scholar
  32. Masunaga, H., 2012: A satellite study of the atmospheric forcing and response to moist convection over tropical and subtropical oceans. J. Atmos. Sci., 69, 150–167, doi: 10.1175/JAS-D-11-016.1.CrossRefGoogle Scholar
  33. Mitovski, T., I. Folkins, K. Von Salzen, et al., 2010: Temperature, relative humidity, and divergence response to high rainfall events in the tropics: Observations and models. J. Climate, 23, 3613–3625, doi: 10.1175/2010JCLI3436.1.CrossRefGoogle Scholar
  34. Mitovski, T., and I. Folkins, 2014: Anomaly patterns about strong convective events in the tropics and midlatitudes: Observations from radiosondes and surface weather stations. J. Geophys. Res., 119, 385–406, doi: 10.1002/2013JD020447.CrossRefGoogle Scholar
  35. Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456–1475, doi: 10.1175/1520-0442-16.10.1456.CrossRefGoogle Scholar
  36. Qin, F., and Y. F. Fu, 2016: TRMM-observed summer warm rain over the tropical and subtropical Pacific Ocean: Characteristics and regional differences. J. Meteor. Res, 30, 371–385, doi: 10.1007/s13351-016-5151-x.CrossRefGoogle Scholar
  37. Rapp, A. D., C. D. Kummerow, and L. Fowler, 2011: Interactions between warm rain clouds and atmospheric preconditioning for deep convection in the tropics. J. Geophys. Res., 116, D23210, doi: 10.1029/2011JD016143.Google Scholar
  38. Ratnam, M. V., Y. D. Santhi, M. Rajeevan, et al., 2013: Diurnal variability of stability indices observed using radiosonde observations over a tropical station: Comparison with microwave radiometer measurements. Atmos. Res., 124, 21–33, doi: 10.1016/j.atmosres.2012.12.007.CrossRefGoogle Scholar
  39. Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457–2476, doi: 10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.CrossRefGoogle Scholar
  40. Schumacher, C., and Jr. R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 1739–1756, doi: 10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.CrossRefGoogle Scholar
  41. Sheng, P. X., J. T. Mao, J. G. Li, et al., 2003: Atmospheric Physics. Peking University Press, Beijing, 522 pp. (in Chinese)Google Scholar
  42. Tao, W. K., S. Lang, X. P. Zeng, et al., 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 1874–1893, doi: 10.1175/2009JCLI3278.1.CrossRefGoogle Scholar
  43. Wu, X. K., X. S. Qie, and T. Yuan, 2013: Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Sci. China Earth Sci., 56, 843–854, doi: 10.1007/s11430-012-4551-8.CrossRefGoogle Scholar
  44. Xia, J. W., and Y. F. Fu, 2016: The Vertical characteristics of temperature and humidity inside convective and stratiform precipitating clouds in the East Asian summer monsoon region and Indian summer monsoon region. Chinese J. Atmos. Sci., 40, 563–580, doi: 10.3878/j.issn.1006-9895.1507.15123. (in Chinese)Google Scholar
  45. Xian, T., and Y. F. Fu, 2015: Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements. J. Geophys. Res., 120, 7006–7024, doi: 10.1002/2014JD022633.CrossRefGoogle Scholar
  46. Xu, W. X., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577–1592, doi: 10.1175/MWR-D-12-00177.1.CrossRefGoogle Scholar
  47. Yang, S., and E. A. Smith, 2000: Vertical structure and transient behavior of convective-stratiform heating in TOGA COARE from combined satellite-sounding analysis. J. Appl. Meteor., 39, 1491–1513, doi: 10.1175/1520-0450(2000)039<1491:VSATBO>2.0.CO;2.CrossRefGoogle Scholar
  48. Yu, R. C., T. J. Zhou, A. Y. Xiong, et al., 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi: 10.1029/2006GL028129.Google Scholar
  49. Yu, R. C., J. Li, H. M. Chen, et al., 2014: Progress in studies of the precipitation diurnal variation over contiguous China. J. Meteor. Res., 28, 877–902, doi: 10.1007/s13351-014-3272-7.CrossRefGoogle Scholar
  50. Yuter, S. E., and Jr. R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 1921–1940, doi: 10.1175/1520-0493(1995)123<1921:TDKAME>2.0.CO;2.CrossRefGoogle Scholar
  51. Zheng, D., Y. J. Zhang, W. T. Lu, et al., 2008: Simulation study about the influence of atmospheric stratification on lightning activities. Acta Meteor. Sinica, 22, 78–90.Google Scholar
  52. Zhou, L., and Y. Q. Wang, 2006: Tropical Rainfall Measuring Mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J. Geophys. Res., 111, D17104, doi: 10.1029/2006JD007243.CrossRefGoogle Scholar
  53. Zhou, T. J., and Yu, R. C., 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi: 10.1029/2004JD005413.Google Scholar
  54. Zhou, T. J., R. C. Yu, H. M. Chen, et al., 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 3997–4010, doi: 10.1175/2008JCLI2028.1.CrossRefGoogle Scholar
  55. Zhu, Y. L., H. J. Wang, W. Zhou, et al., 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36, 1463–1473, doi: 10.1007/s00382-010-0852-9.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  3. 3.Key Laboratory of Atmospheric Sciences and Satellite Remote Sensing of Anhui ProvinceAnhui Institute of Meteorological SciencesHefeiChina

Personalised recommendations