Journal of Meteorological Research

, Volume 31, Issue 6, pp 1070–1084 | Cite as

Temporal variation and source identification of black carbon at Lin’an and Longfengshan regional background stations in China

Regular Articles


Black carbon (BC) is a component of fine particulate matter (PM2.5), associated with climate, weather, air quality, and people’s health. However, studies on temporal variation of atmospheric BC concentration at background stations in China and its source area identification are lacking. In this paper, we use 2-yr BC observations from two background stations, Lin’an (LAN) and Longfengshan (LFS), to perform the investigation. The results show that the mean diurnal variation of BC has two significant peaks at LAN while different characteristics are found in the BC variation at LFS, which are probably caused by the difference in emission source contributions. Seasonal variation of monthly BC shows double peaks at LAN but a single peak at LFS. The annual mean concentrations of BC at LAN and LFS decrease by 1.63 and 0.26 μg m–3 from 2009 to 2010, respectively. The annual background concentration of BC at LAN is twice higher than that at LFS. The major source of the LAN BC is industrial emission while the source of the LFS BC is residential emission. Based on transport climatology on a 7-day timescale, LAN and LFS stations are sensitive to surface emissions respectively in belt or approximately circular area, which are dominated by summer monsoon or colder land air flows in Northwest China. In addition, we statistically analyze the BC source regions by using BC observation and FLEXible PARTicle dispersion model (FLEXPART) simulation. In summer, the source regions of BC are distributed in the northwest and south of LAN and the southwest of LFS. Low BC concentration is closely related to air mass from the sea. In winter, the source regions of BC are concentrated in the west and south of LAN and the northeast of the threshold area of s tot at LFS. The cold air mass in the northwest plays an important role in the purification of atmospheric BC. On a yearly scale, sources of BC are approximately from five provinces in the northwest/southeast of LAN and the west of LFS. These findings are helpful in reducing BC emission and controlling air pollution.


black carbon temporal variation source region atmospheric background station 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to the staff at LAN and LFS for BC observations and the efforts of the Emissions Database for Global Atmospheric Research team for providing the HTAP emissions. We are thankful to Norwegian Institute for Air Research for providing FLEXPART model.


  1. Ackerman, A. S., O. B. Toon, D. E. Stevens, et al., 2000: Reduction of tropical cloudiness by soot. Science, 288, 1042–1047, doi: 10.1126/science.288.5468.1042.CrossRefGoogle Scholar
  2. An, X. Q., Z. B. Sun, W. L. Lin, et al., 2013: Emission inventory evaluation using observations of regional atmospheric background stations of China. J. Environ. Sci., 25, 537–546, doi: 10.1016/s1001-0742(12)60082-5.CrossRefGoogle Scholar
  3. Anenberg, S. C., K. Talgo, S. Arunachalam, et al., 2011: Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality. Atmos. Chem. Phys., 11, 7253–7267, doi: 10.5194/acp-11-7253-2011.CrossRefGoogle Scholar
  4. Ashbaugh, L. L., 1983: A statistical trajectory technique for determining air pollution source regions. J. Air Pollution Control Assoc., 33, 1096–1098, doi: 10.1080/00022470.1983.10465702.CrossRefGoogle Scholar
  5. Bodhaine, B. A., 1995: Aerosol absorption measurements at Barrow, Mauna Loa and the South Pole. J. Geophys. Res., 100, 8967–8975, doi: 10.1029/95jd00513.CrossRefGoogle Scholar
  6. Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Science and Technology, 40, 27–67, doi: 10.1080/02786820500421521.CrossRefGoogle Scholar
  7. Bond, T. C., S. J. Doherty, D. W. Fahey, et al., 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118, 5380–5552, doi: 10.1002/jgrd.50171.Google Scholar
  8. Cao, J. J., S. C. Lee, K. F. Ho, et al., 2004: Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos. Environ., 38, 4447–4456, doi: 10.1016/j.atmosenv.2004.05.016.CrossRefGoogle Scholar
  9. Cape, J. N., M. Coyle, and P. Dumitrean, 2012: The atmospheric lifetime of black carbon. Atmos. Environ., 59, 256–263, doi: 10.1016/j.atmosenv.2012.05.030.CrossRefGoogle Scholar
  10. Chen, H. Z., D. Wu, B. T. Liao, et al., 2013: Compare of black carbon concentration variation between Dongguan and Maofengshan. China Environ. Sci., 33, 605–612. (in Chinese)Google Scholar
  11. Chen, L., L. Zhang, L. Zhang, et al., 2012: Characteristics of black carbon aerosol and carbonaceous gases and their emission sources in semi-arid region. China Environ. Sci., 32, 1345–1352. (in Chinese)Google Scholar
  12. Cheng, S. Y., X. Q. An, L. X. Zhou, et al., 2015: CO2 concentration representation of source and sink area at Shangdianzi atmospheric background station in Beijing. China Environ. Sci., 35, 2576–2584. (in Chinese)Google Scholar
  13. Cheng, Y., S. C. Lee, K. F. Ho, et al., 2006: Black carbon measurement in a coastal area of South China. J. Geophys. Res., 111, D12310, doi: 10.1029/2005jd006663.CrossRefGoogle Scholar
  14. Chuang, M.-T., C.-T. Lee, C. C.-K. Chou, et al., 2014: Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmos. Environ., 89, 507–516, doi: 10.1016/j.atmosenv.2013.11.066.CrossRefGoogle Scholar
  15. Crawford, J., S. Chambers, D. D. Cohen, et al., 2007: Receptor modelling using Positive Matrix Factorisation, back trajectories and Radon-222. Atmos. Environ., 41, 6823–6837, doi: 10.1016/j.atmosenv.2007.04.048.CrossRefGoogle Scholar
  16. Fang, S. X., L. X. Zhou, P. P. Tans, et al., 2014: In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos. Chem. Phys., 14, 2541–2554, doi: 10.5194/acp-14-2541-2014.CrossRefGoogle Scholar
  17. Han, Y. J., T. M. Holsen, P. K. Hopke, et al., 2005: Comparison between back-trajectory based modeling and lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury. Environ. Sci. Technol., 39, 1715–1723, doi: 10.1021/es0498540.CrossRefGoogle Scholar
  18. Hirdman, D., K. Aspmo, J. F. Burkhart, et al., 2009: Transport of mercury in the Arctic atmosphere: Evidence for a spring-time net sink and summer-time source. Geophys. Res. Lett., 36, L12814, doi: 10.1029/2009gl038345.CrossRefGoogle Scholar
  19. Hirdman, D., H. Sodemann, S. Eckhardt, et al., 2010: Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmos. Chem. Phys., 10, 669–693, doi: 10.5194/acp-10-669-2010.CrossRefGoogle Scholar
  20. Irwin, M., Y. Kondo, and N. Moteki, 2015: An empirical correction factor for filter-based photo-absorption black carbon measurements. J. Aerosol Sci., 80, 86–97, doi: 10.1016/j.jaerosci.2014.11.001.CrossRefGoogle Scholar
  21. Kanaya, Y., F. Taketani, Y. Komazaki, et al., 2013: Comparison of black carbon mass concentrations observed by multi-angle absorption photometer (MAAP) and continuous soot-monitoring system (COSMOS) on Fukue Island and in Tokyo, Japan. Aerosol Sci. Tech., 47, 1–10, doi: 10.1080/02786826.2012.716551.CrossRefGoogle Scholar
  22. Kanaya, Y., X. L. Pan, T. Miyakawa, et al., 2016: Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009–2015: Constraining wet removal rates and emission strengths from East Asia. Atmos. Chem. Phys., 16, 10689–10705, doi: 10.5194/acp-2016-213.CrossRefGoogle Scholar
  23. Kaspari, S., T. H. Painter, M. Gysel, et al., 2014: Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos. Chem. Phys., 14, 8089–8103, doi: 10.5194/acp-14-8089-2014.CrossRefGoogle Scholar
  24. Kaspari, S., S. McKenzie Skiles, I. Delaney, et al., 2015: Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire. J. Geophys. Res., 120, 2793–2807, doi: 10.1002/2014jd022676.Google Scholar
  25. Kulkarni, S., N. Sobhani, J. P. Miller-Schulze, et al., 2015: Source sector and region contributions to BC and PM2.5 in Central Asia. Atmos. Chem. Phys., 15, 1683–1705, doi: 10.5194/acp-15-1683-2015.CrossRefGoogle Scholar
  26. Kurokawa, J., T. Ohara, T. Morikawa, et al., 2013: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional emission inventory in Asia (REAS) version 2. Atmos. Chem. Phys., 13, 11019–11058, doi: 10.5194/acp-13-11019-2013.CrossRefGoogle Scholar
  27. Latha, K. M., and K. V. S. Badarinath, 2004: Correlation between black carbon aerosols, carbon monoxide and tropospheric ozone over a tropical urban site. Atmos. Res., 71, 265–274, doi: 10.1016/j.atmosres.2004.06.004.CrossRefGoogle Scholar
  28. Li, C. L., C. Bosch, S. C. Kang, et al., 2016: Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nat. Commun., 7, 12574, doi: 10.1038/ncomms12574.CrossRefGoogle Scholar
  29. Li, K., H. Liao, Y. H. Mao, et al., 2016: Source sector and region contributions to concentration and direct radiative forcing of black carbon in China. Atmos. Environ., 124, 351–366, doi: 10.1016/j.atmosenv.2015.06.014.CrossRefGoogle Scholar
  30. Li, Y., J. J. Cao, X. Y. Zhang, et al., 2005: The variability and source apportionment of black carbon aerosol in Xi’ an atmosphere during the autumn of 2003. Climatic Environ. Res., 10, 229–237. (in Chinese)Google Scholar
  31. Liu, L. X., L. X. Zhou, X. C. Zhang, et al., 2009: The characteristics of atmospheric CO2 concentration variation of four national background stations in China. Sci. China Earth Sci., 52, 1857–1863, doi: 10.1007/s11430-009-0143-7.CrossRefGoogle Scholar
  32. Liu, Q. Y., T. M. Ma, M. R. Olson, et al., 2016: Temporal variations of black carbon during haze and non-haze days in Beijing. Sci. Rep., 6, 33331, doi: 10.1038/srep33331.CrossRefGoogle Scholar
  33. Lu, Z. F., D. G. Streets, Q. Zhang, et al., 2012: A novel backtrajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996–2010. Geophys. Res. Lett., 39, L01809, doi: 10.1029/2011gl049903.Google Scholar
  34. Ming, J., C. D. Xiao, J. Y. Sun, et al., 2010: Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J. Environ. Sci., 22, 1748–1756, doi: 10.1016/s1001-0742(09)60315-6.CrossRefGoogle Scholar
  35. Pan, X. L., Y. Kanaya, Z. F. Wang, et al., 2011: Correlation of black carbon aerosol and carbon monoxide in the highaltitude environment of Mt. Huang in eastern China. Atmos. Chem. Phys., 11, 9735–9747, doi: 10.5194/acp-11-9735-2011.CrossRefGoogle Scholar
  36. Petzold, A., J. A. Ogren, M. Fiebig, et al., 2013: Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys., 13, 8365–8379, doi: 10.5194/acp-13-8365-2013.CrossRefGoogle Scholar
  37. Pfaffhuber, K. A., T. Berg, D. Hirdman, et al., 2012: Atmospheric mercury observations from Antarctica: Seasonal variation and source and sink region calculations. Atmos. Chem. Phys., 12, 3241–3251, doi: 10.5194/acp-12-3241-2012.CrossRefGoogle Scholar
  38. Polissar, A. V., P. K. Hopke, and J. M. Harris, 2001: Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ. Sci. Technol., 35, 4214–4226, doi: 10.1021/es0107529.CrossRefGoogle Scholar
  39. Pu, J.-J., H.-H. Xu, J. He, et al., 2014: Estimation of regional background concentration of CO2 at Lin'an station in Yangtze River Delta, China. Atmos. Environ., 94, 402–408, doi: 10.1016/j.atmosenv.2014.05.060.CrossRefGoogle Scholar
  40. Qu, W. J., D. Wang, Y. Q. Wang, et al., 2010: Seasonal variation, source, and regional representativeness of the background aerosol from two remote sites in western China. Environmental Monitoring & Assessment, 167, 265–288, doi: 10.1007/s10661-009-1048-9.CrossRefGoogle Scholar
  41. Reddington, C. L., G. McMeeking, G. W. Mann, et al., 2013: The mass and number size distributions of black carbon aerosol over Europe. Atmos. Chem. Phys., 13, 4917–4939, doi: 10.5194/acp-13-4917-2013.CrossRefGoogle Scholar
  42. Ruckstuhl, A. F., S. Henne, S. Reimann, et al., 2012: Robust extraction of baseline signal of atmospheric trace species using local regression. Atmospheric Measurement Techniques, 5, 2613–2624, doi: 10.5194/amt-5-2613-2012.CrossRefGoogle Scholar
  43. Saha, A., and S. Despiau, 2009: Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmos. Res., 92, 27–41, doi: 10.1016/j.atmosres.2008.07.007.CrossRefGoogle Scholar
  44. Schmale, J., M. Flanner, S. C. Kang, et al., 2017: Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Sci. Rep., 7, 40501, doi: 10.1038/srep40501.CrossRefGoogle Scholar
  45. Schwarz, J. P., R. S. Gao, J. R. Spackman, et al., 2008: Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys. Res. Lett., 35, L13810, doi: 10.1029/2008gl033968.CrossRefGoogle Scholar
  46. Schwarz, J. P., B. Weinzierl, B. H. Samset, et al., 2017: Aircraft measurements of black carbon vertical profiles show upper tropospheric variability and stability. Geophys. Res. Lett., 44, 1132–1140, doi: 10.1002/2016gl071241.CrossRefGoogle Scholar
  47. Sharma, S., E. Andrews, L. A. Barrie, et al., 2006: Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989–2003. J. Geophys. Res., 111, doi: 10.1029/2005jd006581.Google Scholar
  48. Spackman, J. R., R. S. Gao, W. D. Neff, et al., 2010: Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic. Atmos. Chem. Phys., 10, 9667–9680, doi: 10.5194/acp-10-9667-2010.CrossRefGoogle Scholar
  49. Srivastava, A. K., S. Singh, P. Pant, et al., 2012: Characteristics of black carbon over Delhi and Manora Peak: A comparative study. Atmos. Sci. Lett., 13, 223–230, doi: 10.1002/asl.386.CrossRefGoogle Scholar
  50. Stohl, A., 2006: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res., 111, doi: 10.1029/2005jd006888.Google Scholar
  51. Stohl, A., B. Aamaas, M. Amann, et al., 2015: Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys., 15, 10529–10566, doi: 10.5194/acp-15-10529-2015.CrossRefGoogle Scholar
  52. Tang, J., Y. P. Wen, L. X. Zhou, et al., 1999: Observational study of black carbon in clean air area of western China. J. Appl. Meteor. Sci., 10, 160–170. (in Chinese)Google Scholar
  53. Tao, J., L. H. Zhu, J. L. Han, et al., 2009: Study on characteristics of black carbon aerosol pollution and preliminary exploration on its source in Guangzhou urban area during the winter. Environ. Monitor. in China, 25, 53–56. (in Chinese)Google Scholar
  54. Virkkula, A., T. Mäkelä, R. Hillamo, et al., 2007: A simple procedure for correcting loading effects of aethalometer data. J. Air & Waste Manag. Assoc., 57, 1214–1222, doi: 10.3155/1047-3289.57.10.1214.CrossRefGoogle Scholar
  55. Wang, P., H. Wang, Y. Q. Wang, et al., 2016: Inverse modeling of black carbon emissions over China using ensemble data assimilation. Atmos. Chem. Phys., 16, 989–1002, doi: 10.5194/acp-16-989-2016.CrossRefGoogle Scholar
  56. Wang, Q. Y., R. J. Huang, J. J. Cao, et al., 2014: Mixing state of black carbon aerosol in a heavily polluted urban area of China: Implications for light absorption enhancement. Aerosol Sci. Tech., 48, 689–697, doi: 10.1080/02786826.2014.917758.CrossRefGoogle Scholar
  57. Wang, Y. Q., X. Y. Zhang, and R. R. Draxler, 2009: TrajStat: GISbased software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modeling & Software, 24, 938–939, doi: 10.1016/j.envsoft.2009.01.004.CrossRefGoogle Scholar
  58. Winiger, P., A. Andersson, S. Eckhardt, et al., 2016: The sources of atmospheric black carbon at a European gateway to the Arctic. Nat. Commun., 7, 12776, doi: 10.1038/ncomms12776.CrossRefGoogle Scholar
  59. Xia, L. J., L. X. Zhou, P. P. Tans, et al., 2015: Atmospheric CO2 and its δ13C measurements from flask sampling at Lin'an regional background station in China. Atmos. Environ., 117, 220–226, doi: 10.1016/j.atmosenv.2015.07.008.CrossRefGoogle Scholar
  60. Xu, C., J. D. Shen, H. Ye, et al., 2014: Characteristics and source of black carbon aerosol pollution in Hangzhou. China Environ. Sci., 34, 3026–3033. (in Chinese)Google Scholar
  61. Yang, M., S. G. Howell, J. Zhuang, et al., 2009: Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China-interpretations of atmospheric measurements during EAST-AIRE. Atmos. Chem. Phys., 9, 2035–2050, doi: 10.5194/acp-9-2035-2009.CrossRefGoogle Scholar
  62. Zhang, J., J. Liu, S. Tao, et al., 2015: Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale. Atmos. Chem. Phys., 15, 11521–11535, doi: 10.5194/acp-15-11521-2015.CrossRefGoogle Scholar
  63. Zhang, L., H. Liao, and J. P. Li, 2010: Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res., 115, D00K05, doi: 10.1029/2009jd012299.CrossRefGoogle Scholar
  64. Zhang, Q., D. G. Streets, G. R. Carmichael, et al., 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131–5153, doi: 10.5194/acp-9-5131-2009.CrossRefGoogle Scholar
  65. Zhang, X. Y., Y. Q. Wang, X. C. Zhang, et al., 2008a: Carbonaceous aerosol composition over various regions of China during 2006. J. Geophys. Res., 113, D14111, doi: 10.1029/2007jd009525.CrossRefGoogle Scholar
  66. Zhang, X. Y., Y. Q. Wang, X. C. Zhang, et al., 2008b: Aerosol monitoring at multiple locations in China: Contributions of EC and dust to aerosol light absorption. Tellus B: Chemical and Physical Meteorology, 60, 647–656, doi: 10.1111/j.1600-0889.2008.00359.x.CrossRefGoogle Scholar
  67. Zhang, X. Y., Y. Q. Wang, T. Niu, et al., 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 12, 779–799, doi: 10.5194/acp-12-779-2012.CrossRefGoogle Scholar
  68. Zhang, Y. L., R. J. Huang, I. El Haddad, et al., 2015: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos. Chem. Phys., 15, 1299–1312, doi: 10.5194/acp-15-1299-2015.Google Scholar
  69. Zhao, S. Y., J. Ming, C. D. Xiao, et al., 2012: A preliminary study on measurements of black carbon in the atmosphere of northwest Qilian Shan. J. Environ. Sci., 24, 152–159, doi: 10.1016/s1001-0742(11)60739-0.CrossRefGoogle Scholar
  70. Zhuang, B. L., T. J. Wang, J. Liu, et al., 2014: Continuous measurement of black carbon aerosol in urban Nanjing of Yangtze River Delta, China. Atmos. Environ., 89, 415–424, doi: 10.1016/j.atmosenv.2014.02.052.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations