Journal of Meteorological Research

, Volume 31, Issue 5, pp 965–975 | Cite as

Retrieval of eddy thermal conductivity in the weakly nonlinear Prandtl model for katabatic flows

Regular Article
  • 14 Downloads

Abstract

Because the nonlinearity of actual physical processes can be expressed more precisely by the introduction of a nonlinear term, the weakly nonlinear Prandtl model is one of the most effective ways to describe the pure katabatic flow (no background flow). Features of the weak nonlinearity are reflected by two factors: the small parameter ε and the gradually varying eddy thermal conductivity. This paper first shows how to apply the Wentzel–Kramers–Brillouin (WKB) method for the approximate solution of the weakly nonlinear Prandtl model, and then describes the retrieval of gradually varying eddy thermal conductivity from observed wind speed and perturbed potential temperature. Gradually varying eddy thermal conductivity is generally derived from an empirical parameterization scheme. We utilize wind speed and potential temperature measurements, along with the variational assimilation technique, to derive this parameter. The objective function is constructed by the square of the differences between the observation and model value. The new method is validated by numerical experiments with simulated measurements, revealing that the order of the root mean squre error is 10–2 and thus confirming the method’s robustness. In addition, this method is capable of anti-interference, as it effectively reduces the influence of observation error.

Key words

weakly nonlinear Prandtl model parameter retrieval variational method Wentzel–Kramers–Brillouin (WKB) method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, C. P. Jr, and C. H. Dey, 1986: Observing-systems simulation experiments: Past, present, and future. Bull. Amer. Meteor. Soc., 67, 687–695, doi: 10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2.CrossRefGoogle Scholar
  2. Axelsen, S. L., and H. van Dop, 2009: Large-eddy simulation of katabatic winds. Part 2: Sensitivity study and comparison with analytical models. Acta Geophys., 57, 837–856, doi: 10.2478/s11600-009-0042-5.Google Scholar
  3. Baklanov, A. A., B. Grisogono, R. Bornstein, et al., 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123–128, doi: 10.1175/2010BAMS2797.1.CrossRefGoogle Scholar
  4. Barthélemy, A., H. Goosse, P. Mathiot, et al., 2012: Inclusion of a katabatic wind correction in a coarse-resolution global coupled climate model. Ocean Modell., 48, 45–54, doi: 10.1016/j.ocemod.2012.03.002.Google Scholar
  5. Buzzi, M., M. W. Rotach, M. Holtslag, et al., 2011: Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteor. Z., 20, 335–350, doi: 10.1127/0941-2948/2011/0050.CrossRefGoogle Scholar
  6. De Ridder, K., D. Lauwaet, and B. Maiheu, 2015: UrbClim—A fast urban boundary layer climate model. Urban Climate, 12, 21–48, doi: 10.1016/j.uclim.2015.01.001.CrossRefGoogle Scholar
  7. Denby, B., 1999: Second-order modeling of turbulence in kata-batic flows. Bound.-Layer Meteor., 92, 65–98, doi: 10.1023/A:1001796906927.CrossRefGoogle Scholar
  8. Egger, J., 1990: Thermally forced flows: Theory. Atmospheric Processes over Complex Terrain. Blumen W., Ed. Boston, MA, Amer. Meteor. Soc., 43–58.CrossRefGoogle Scholar
  9. Epifanio, C. C., 2007: A method for imposing surface stress and heat flux conditions in finite-difference models with steep terrain. Mon. Wea., Rev., 135, 906–917, doi: 10.1175/MWR3297.1.CrossRefGoogle Scholar
  10. Gao, J. D., C. J. Qiu, and J. F. Chou, 1995: The sensitivity influence of numerical model initial values on four-dimensional assimilation—Study based on Lorenz system. Acta Meteor. Sinica, 9, 278–287.Google Scholar
  11. Grisogono, B., 2003: Post-onset behaviour of the pure katabatic flow. Bound.-Layer Meteor., 107, 157–175, doi: 10.1023/A:1021511105871.CrossRefGoogle Scholar
  12. Grisogono, B., and J. Oerlemans, 2001a: Katabatic flow: Analytic solution for gradually varying eddy diffusivities. J. Atmos. Sci., 58, 3349–3354, doi: 10.1175/1520-0469(2001)058<3349:KFASFG>2.0.CO;2.CrossRefGoogle Scholar
  13. Grisogono, B., and J. Oerlemans, 2001b: A theory for the estimation of surface fluxes in simple katabatic flows. Quart. J. Roy. Meteor. Soc., 127, 2725–2739, doi: 10.1002/qj.49712757811.CrossRefGoogle Scholar
  14. Grisogono, B., and J. Oerlemans, 2002: Justifying the WKB approximation in pure katabatic flows. Tellus, 54, 453–463, doi: 10.3402/tellusa.v54i5.12166.CrossRefGoogle Scholar
  15. Grisogono, B., and S. L. Axelsen, 2012: A note on the pure katabatic wind maximum over gentle slopes. Bound.-Layer Meteor., 145, 527–538, doi: 10.1007/s10546-012-9746-1.CrossRefGoogle Scholar
  16. Grisogono, B., T. Jurlina, Ž. Večenaj, et al., 2015: Weakly nonlinear Prandtl model for simple slope flows. Quart. J. Roy. Meteor. Soc., 141, 883–892, doi: 10.1002/qj.2406.CrossRefGoogle Scholar
  17. Hu, X. M., F. Q. Zhang, and J. W. Nielsen-Gammon, 2010: Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study. Geophys. Res. Lett., 37, L08802, doi: 10.1029/2010GL043017.CrossRefGoogle Scholar
  18. Huang, S. X., J. Xiang, H. D. Du, et al., 2005: Inverse problems in atmospheric science and their application. J. Phys. Conf. Ser., 12, 45–57, doi: 10.1088/1742-6596/12/1/005.CrossRefGoogle Scholar
  19. Huang, S. X., X. Q. Cao, H. D. Du, et al., 2006: Retrieval of atmospheric and oceanic parameters and the relevant numerical calculation. Adv. Atmos. Sci., 23, 106–117, doi: 10.1007/s00376-006-0011-8.CrossRefGoogle Scholar
  20. Ingel, L. K., 2011: Toward a nonlinear theory of katabatic winds. Fluid Dyn., 46, 505–513, doi: 10.1134/S0015462811040016.CrossRefGoogle Scholar
  21. Jeričević, A., L. Kraljević, B. Grisogono, et al., 2010: Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model. Atmos. Chem. Phys., 10, 341–364, doi: 10.5194/acp-10-341-2010.CrossRefGoogle Scholar
  22. Kaipio, J., and E. Somersalo, 2005: Statistical and Computational Inverse Problems. Springer, 357 pp.Google Scholar
  23. Lorenc, A. C., 1988: A practical approximation to optimal four-dimensional objective analysis. Mon. Wea. Rev., 116, 730–745, doi: 10.1175/1520-0493(1988)116<0730:APATOF>2.0.CO;2.CrossRefGoogle Scholar
  24. Mahrt, L., 1982: Momentum balance of gravity flows. J. Atmos. Sci., 39, 2701–2711, doi: 10.1175/1520-0469(1982)039<2701:MBOGF>2.0.CO;2.CrossRefGoogle Scholar
  25. Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theoret. Comput. Fluid Dyn., 11, 263–279, doi: 10.1007/s001620050093.CrossRefGoogle Scholar
  26. Mo, R. P., 2013: On adding thermodynamic damping mechanisms to refine two classical models of katabatic winds. J. Atmos. Sci., 70, 2325–2334, doi: 10.1175/JAS-D-12-0256.1.CrossRefGoogle Scholar
  27. Navon, I. M., 1998: Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dyn. Atmos. Oceans, 27, 55–79, doi: 10.1016/S0377-0265(97)00032-8.CrossRefGoogle Scholar
  28. Nielsen-Gammon, J. W., X. M. Hu, F. Q. Zhang, et al., 2010: Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon. Wea. Rev., 138, 3400–3417, doi: 10.1175/2010MWR3292.1.CrossRefGoogle Scholar
  29. Salvador, N., N. C. Reis Jr, J. M. Santos, et al., 2016: Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment. J. Meteor. Res., 30, 998–1018, doi: 10.1007/s13351-016-6019-9.CrossRefGoogle Scholar
  30. Shapiro, A., B. Burkholder, and E. Fedorovich, 2012: Analytical and numerical investigation of two-dimensional katabatic flow resulting from local surface cooling. Bound.-Layer Meteor., 145, 249–272, doi: 10.1007/s10546-011-9685-2.CrossRefGoogle Scholar
  31. Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 3037–3057, doi: 10.1175/JAS-D-15-0307.1.CrossRefGoogle Scholar
  32. Smith, C. M., and E. D. Skyllingstad, 2005: Numerical simulation of katabatic flow with changing slope angle. Mon. Wea. Rev., 133, 3065–3080, doi: 10.1175/MWR2982.1.CrossRefGoogle Scholar
  33. Stiperski, I., I. Kavčič, B. Grisogono, et al., 2007: Including Coriolis effects in the Prandtl model for katabatic flow. Quart. J. Roy. Meteor. Soc., 133, 101–106, doi: 10.1002/qj.19.CrossRefGoogle Scholar
  34. Sun J. L., D. H. Lenschow, L. Mahrt, et al., 2013: The relationships among wind, horizontal pressure gradient, and turbulent momentum transport during CASES-99. J. Atmos. Sci., 70, 3397–3414, doi: 10.1175/JAS-D-12-0233.1.CrossRefGoogle Scholar
  35. Tan, Z. M., J. Fang, and R. S. Wu, 2006: Nonlinear Ekman layer theories and their applications. Acta Meteor. Sinica, 20, 209–222.Google Scholar
  36. Tosaka, N., K. Onoshi, and M. Yamamoto, 1999: Mathematical Approach and Solution Methods for Inverse Problems: Inverse Analysis of Partial Differential Equation. University of Tokyo Press, 294 pp. (in Japanese)Google Scholar
  37. van den Broeke, M. R., 1997: Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer. Bound.-Layer Meteor., 83, 183–205, doi: 10.1023/A:1000268825998.CrossRefGoogle Scholar
  38. Yan, B., and S. X. Huang, 2014: Variational regularization method of solving the Cauchy problem for Laplace’s equation: Innovation of the Grad–Shafranov (GS) reconstruction. Chinese Phys. B, 23, 650–655, doi: 10.1088/1674-1056/23/10/109402.Google Scholar
  39. Zhao, X. F., and S. X. Huang, 2012: Estimation of atmospheric duct structure using radar sea clutter. J. Atmos. Sci., 69, 2808–2818, doi: 10.1175/JAS-D-12-073.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Meteorology and OceanographyNational University of Defense TechnologyNanjingChina
  2. 2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina

Personalised recommendations