Journal of Meteorological Research

, Volume 31, Issue 5, pp 906–915 | Cite as

Long-term trend in potential vorticity intrusion events over the Pacific Ocean: Role of global mean temperature rise

Regular Article


In this study, we examine a long-term increasing trend in subtropical potential vorticity (PV) intrusion events over the Pacific Ocean in relation to the global mean temperature rise, based on multiple reanalysis datasets. The frequency of the PV intrusions is closely related to the upper-tropospheric equatorial westerly duct and the subtropical jet (STJ). An overall strengthening of the westerly duct and weakening of the STJ are found to be driven by the warming-induced strengthening of Walker circulation and regional changes in Hadley circulation on multi-decadal timescale, leading to an increase in the PV intrusion frequency over the tropics. The results are robust in all datasets. The multi-decadal strengthening in the Pacific Walker circulation is consistent with the global mean temperature rise. In this way, the PV intrusions are correlated with the warming related global mean temperuate rise. When the interannual variability of ENSO is removed from the intrusion time series, the long-term trend in PV intrusions due to external forcing associated with anthropogenic warming (global mean temperature rise) becomes clearer. The link between the global mean temperature rise and intrusion frequency is further verified by performing a correlation analysis between the two. The significant (> 95%) correlation coefficient is 0.85, 0.94, 0.84, 0.83, and 0.84 for ERA-40, ERA-Interim, NCEP-NCAR, JRA-55, and JRA-25, respectively. This unequivocally indicates that the global mean temperature rise can explain around 69%–88% of the variance related to the long-term increase in PV intrusion frequency over the Pacific Ocean.

Key words

potential vorticity (PV) intrusion Pacific Ocean westerly duct subtropical jet Walker circulation global warming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.CrossRefGoogle Scholar
  2. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.CrossRefGoogle Scholar
  3. Brunet, G., and P. H. Haynes, 1996: Low-latitude reflection of Rossby wave Trains. J. Atmos. Sci., 53, 482–496, doi: 10.1175/1520-0469(1996)053<0482:LLRORW>2.0.CO;2.CrossRefGoogle Scholar
  4. Cane, M. A., A. C. Clement, A. Kaplan, et al., 1997: Twentiethcentury sea surface temperature trends. Science, 275, 957–960, doi: 10.1126/science.275.5302.957.CrossRefGoogle Scholar
  5. Chung, P. H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate., 26, 361–379, doi: 10.1175/JCLI-D-12-00106.1.CrossRefGoogle Scholar
  6. Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28.CrossRefGoogle Scholar
  7. Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 1830–1841, doi: 10.1002/qj.v135:644.CrossRefGoogle Scholar
  8. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/(ISSN)1477-870X.CrossRefGoogle Scholar
  9. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate., 19, 5686–5699, doi: 10.1175/JCLI3990.1.CrossRefGoogle Scholar
  10. Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813–829, doi: 10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.CrossRefGoogle Scholar
  11. Kalnay E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  12. Kiladis, G. N., and K. M. Weickmann, 1992: Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120, 1924–1939, doi: 10.1175/1520-0493(1992)120<1924:EFOTPC>2.0.CO;2.CrossRefGoogle Scholar
  13. Kobayashi, S., Y. Ota, Y. Harada, et al., 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan., 93, 5–48, doi: 10.2151/jmsj.2015-001.CrossRefGoogle Scholar
  14. Kousky, V. E., M. T. Kagano, and I. F. A. Cavalcanti, 1984: A review of the Southern Oscillation: Oceanic–atmospheric circulation changes and related rainfall anomalies. Tellus A, 36, 490–504, doi: 10.3402/tellusa.v36i5.11649.CrossRefGoogle Scholar
  15. L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571–576.Google Scholar
  16. Lian, T., and D. Chen, 2012: An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J. Climate, 25, 5361–5373, doi: 10.1175/JCLI-D-11-00663.1.CrossRefGoogle Scholar
  17. Matthews, A. J., and G. N. Kiladis, 1999: Interactions between ENSO, transient circulation, and tropical convection over the Pacific. J. Climate, 12, 3062–3086, doi: 10.1175/1520-0442(1999)012<3062:IBETCA>2.0.CO;2.CrossRefGoogle Scholar
  18. McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593–600, doi: 10.1038/305593a0.CrossRefGoogle Scholar
  19. McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275.CrossRefGoogle Scholar
  20. Miller, A. J., D. R. Cayan, T. P. Barnett, et al., 1994: The 1976–77 climate shift of the Pacific Ocean. Oceanography, 7, 21–26, doi: 10.5670/oceanog.CrossRefGoogle Scholar
  21. Nath, D., W. Chen, H. F. Graf, et al., 2016: Subtropical potential vorticity intrusion drives increasing tropospheric ozone over the tropical central Pacific. Sci. Rep., 6, 21370, doi: 10.1038/srep21370.CrossRefGoogle Scholar
  22. North, G. R., 1984: Empirical orthogonal functions and normal modes. J. Atmos. Sci., 41, 879–887, doi: 10.1175/1520-0469(1984)041<0879:EOFANM>2.0.CO;2.CrossRefGoogle Scholar
  23. Onogi, K., J. Tsutsui, H. Koide, et al., 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan., 85, 369–432, doi: 10.2151/jmsj.85.369.CrossRefGoogle Scholar
  24. Rienecker, M. M., M. J. Suarez, R. Gelaro, et al., 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for research and applications. J. Climate, 24, 3624–3648, doi: 10.1175/JCLID-11-00015.1.CrossRefGoogle Scholar
  25. Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation model ECHAM5. Part I: Model Description. Report No. 349, Hamburg, Germany, Max-Planck-Institut für Meteorologie.Google Scholar
  26. Saha, S., S. Moorthi, H. L. Pan, et al., 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi: 10.1175/2010BAMS3001.1.CrossRefGoogle Scholar
  27. Tokinaga, H., S. P. Xie, C. Deser, et al., 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439–443, doi: 10.1038/nature11576.CrossRefGoogle Scholar
  28. Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 19–32, doi: 10.1002/2013EF000165.CrossRefGoogle Scholar
  29. Uppala, S. M., P. W. Kållberg, A. J. Simmons, et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi: 10.1256/qj.04.176.CrossRefGoogle Scholar
  30. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340, doi: 10.1175/JCLI4258.1.CrossRefGoogle Scholar
  31. Vecchi, G. A., B. J. Soden, A. T. Wittenberg, et al., 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76, doi: 10.1038/nature04744.CrossRefGoogle Scholar
  32. Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8, 267–285, doi: 10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2.CrossRefGoogle Scholar
  33. Wang, C., 2005: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Present, Past and Future. Diaz, H. F., and R. S. Bradley, Eds. Dordrecht, Springer, 173–202.Google Scholar
  34. Waugh, D. W., 2005: Impact of potential vorticity intrusions on subtropical upper tropospheric humidity. J. Geophys. Res., 110, D11305, doi: 10.1029/2004JD005664.CrossRefGoogle Scholar
  35. Waugh, D. W., and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett., 27, 3857–3860, doi: 10.1029/2000GL012250.CrossRefGoogle Scholar
  36. Waugh, D. W., and B. M. Funatsu, 2003: Intrusions into the tropical upper troposphere: Three-dimensional structure and accompanying ozone and OLR distributions. J. Atmos. Sci., 60, 637–653, doi: 10.1175/1520-0469(2003)060<0637:IITTUT>2.0.CO;2.CrossRefGoogle Scholar
  37. Waugh, D. W., R. A. Plumb, and L. M. Polvani, 1994: Nonlinear, barotropic response to a localized topographic forcing: Formation of a " tropical surf zone” and its effect on interhemispheric propagation. J. Atmos. Sci., 51, 1401–1416, doi: 10.1175/1520-0469(1994)051<1401:NBRTAL>2.0.CO;2.CrossRefGoogle Scholar
  38. Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327–340, doi: 10.1007/s00382-012-1427-8.CrossRefGoogle Scholar
  39. Zhang, W. J., J. P. Li, and X. Zhao, 2010: Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res., 115, C12042, doi: 10.1029/2010JC006501.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations