Journal of Meteorological Research

, Volume 31, Issue 5, pp 820–833 | Cite as

A comparison of the effects of interannual Arctic sea ice loss and ENSO on winter haze days: Observational analyses and AGCM simulations

Special Collection on the Heavy and Persistent Haze–Fog Episodes in Winter 2016 in the Beijing–Tianjin–Hebei Area of China
  • 41 Downloads

Abstract

This study compares the impacts of interannual Arctic sea ice loss and ENSO events on winter haze days in mainland China through observational analyses and AGCM sensitivity experiments. The results suggest that (1) Arctic sea ice loss favors an increase in haze days in central–eastern China; (2) the impact of ENSO is overall contained within southern China, with increased (reduced) haze days during La Niña (El Niño) winters; and (3) the impacts from sea ice loss and ENSO are linearly additive. Mechanistically, Arctic sea ice loss causes quasi-barotropic positive height anomalies over the region from northern Europe to the Ural Mountains (Urals in brief) and weak and negative height anomalies over the region from central Asia to northeastern Asia. The former favors intensified frequency of the blocking over the regions from northern Europe to the Urals, whereas the latter favors an even air pressure distribution over Siberia, Mongolia, and East Asia. This large-scale circulation pattern favors more frequent occurrence of calm and steady weather in northern China and, as a consequence, increased occurrence of haze days. In comparison, La Niña (El Niño) exerts its influence along a tropical pathway by inducing a cyclonic (anticyclonic) lower-tropospheric atmospheric circulation response over the subtropical northwestern Pacific. The northeasterly (southwesterly) anomaly at the northwestern rear of the cyclone (anticyclone) causes reduced (intensified) rainfall over southeastern China, which favors increased (reduced) occurrence of haze days through the rain-washing effect.

Key words

winter haze days Arctic sea ice loss ENSO AGCM experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, H. P., and H. J. Wang, 2015: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res., 120, 5895–5909, doi: 10.1002/2015JD023225.Google Scholar
  2. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.v137.656.CrossRefGoogle Scholar
  3. Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617–633, doi: 10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.CrossRefGoogle Scholar
  4. Ding, Y. H., and Y. J. Liu, 2014: Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci. China Earth Sci., 57, 36–46, doi: 10.1007/s11430-013-4792-1.CrossRefGoogle Scholar
  5. Doyle, M., and S. Dorling, 2002: Visibility trends in the UK 1950–1997. Atmos. Environ., 36, 3161–3172, doi: 10.1016/S1352-2310(02)00248-0.CrossRefGoogle Scholar
  6. Gao, G., 2008: The climatic characteristics and change of haze days over China during 1961–2005. Acta Geogr. Sinica, 63, 761–768. (in Chinese)Google Scholar
  7. Gao, H., and X. Li, 2015: Influences of El Niño southern oscillation events on haze frequency in eastern China during boreal winters. Int. J. Climatol., 35, 2682–2688, doi: 10.1002/joc.2015.35.issue-9.CrossRefGoogle Scholar
  8. Gong, T. T., and D. H. Luo, 2017: Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, doi: 10.1175/JCLI-D-16-0548.1.Google Scholar
  9. Han, Z., S. L. Li, J. P. Liu, et al., 2016a: Linear additive impacts of Arctic sea ice reduction and La Niña on the Northern Hemisphere winter climate. J. Climate, 29, 5513–5532, doi: 10.1175/JCLI-D-15-0416.1.CrossRefGoogle Scholar
  10. Han, Z., F. F. Luo, and J. H. Wan, 2016b: The observational influence of the North Atlantic SST tripole on the early spring atmospheric circulation. Geophys. Res. Lett., 28, 2998–3003.CrossRefGoogle Scholar
  11. He, H., X. M. Wang, Y. S. Wang, et al., 2013: Formation mechanism and control strategies of haze in China. Bull. Chinese Acad. Sci., 28, 344–352. (in Chinese)Google Scholar
  12. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi: 10.1029/2008GL037079.CrossRefGoogle Scholar
  13. Li, C. Y., 1989: Frequent activities of stronger aerotroughs in East Asia in wintertime and the occurrence of the El Niño event. Sci. China Chem., 32, 976–985.Google Scholar
  14. Li, S. L., J. Lu, G. Huang, et al., 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088, doi: 10.1175/2008JCLI2433.1.CrossRefGoogle Scholar
  15. Liu, J. P., J. A. Curry, H. J. Wang, et al., 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 4074–4079, doi: 10.1073/pnas.1114910109.CrossRefGoogle Scholar
  16. Mori, M., M. Watanabe, H. Shiogama, et al., 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869–873, doi: 10.1038/ngeo2277.CrossRefGoogle Scholar
  17. Niu, F., Z. Q. Li, C. Li, et al., 2010: Increase of wintertime fog in China: Potential impacts of weakening of the eastern Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res., 115, D00K20, doi: 10.1029/2009JD013484.CrossRefGoogle Scholar
  18. Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi: 10.1029/2009JD013568.CrossRefGoogle Scholar
  19. Pope, C. A., III, and D. W. Dockery, 2006: Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc., 56, 709–742, doi: 10.1080/10473289.2006.10464485.CrossRefGoogle Scholar
  20. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  21. Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM5. Part I: Model Description. Max Planck Institute for Meteorology Report No. 349, Max Planck Institute for Meteorology, Hamburg, 127 pp.Google Scholar
  22. Roeckner, E., R. Brokopf, M. Esch, et al., 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 3771–3791, doi: 10.1175/JCLI3824.1.CrossRefGoogle Scholar
  23. Schichtel, B. A., R. B. Husar, S. R. Falke, et al., 2001: Haze trends over the United States 1980–1995. Atmos. Environ., 35, 5205–5210, doi: 10.1016/S1352-2310(01)00317-X.CrossRefGoogle Scholar
  24. Schneider, U., A. Becker, P. Finger, et al., 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 15–40, doi: 10.1007/s00704-013-0860-x.CrossRefGoogle Scholar
  25. SMSSDM (Staff Members of the Section of Synoptic and Dynamic Meteorology, Institute of Geophysics and Meteorology, Academia Sinica, Peking), 1957: On the general circulation over East Asia (I). Tellus, 9, 432–446.Google Scholar
  26. Tao, J., J. Gao, L. Zhang, et al., 2014: PM2.5 pollution in a megacity of Southwest China: Source apportionment and implication. Atmos. Chem. Phys., 14, 8679–8699, doi: 10.5194/acp-14-8679-2014.CrossRefGoogle Scholar
  27. Tao, S. Y., 1959: A review on the past 10-year study on cold surge in China. Acta Meteor. Sinica, 30, 226–230. (in Chinese)Google Scholar
  28. Vautard, R., P. Yiou, and G. J. van Oldenborgh, 2009: Decline of fog, mist and haze in Europe over the past 30 years. Nat. Geosci., 2, 115–119, doi: 10.1038/ngeo414.CrossRefGoogle Scholar
  29. Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change, 117, 52–63, doi: 10.1016/j.gloplacha.2014.03.003.CrossRefGoogle Scholar
  30. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  31. Wang, H. J., H. P. Chen, and J. P. Liu, 2015: Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Oceanic Sci. Lett., 8, 1–9, doi: 10.3878/AOSL20140081.Google Scholar
  32. Wang, X. P., and D. L. Mauzerall, 2006: Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies. Atmos. Environ., 40, 1706–1721, doi: 10.1016/j.atmosenv.2005.10.066.CrossRefGoogle Scholar
  33. Wang, Y. H., R. D. Field, and O. Roswintiarti, 2004: Trends in atmospheric haze induced by peat fires in Sumatra Island, Indonesia and El Niño phenomenon from 1973 to 2003. Geophys. Res. Lett., 31, L04103, doi: 10.1029/2003GL018853.CrossRefGoogle Scholar
  34. Wang, Y. S., L. Yao, Z. R. Liu, et al., 2013: Formation of haze pollution in Beijing–Tianjin–Hebei region and their control strategies. Bull. Chinese Acad. Sci., 28, 353–363. (in Chinese)Google Scholar
  35. Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011: Effects of autumn–winter Arctic sea ice on winter Siberian high. Chinese Sci. Bull., 56, 3220–3228, doi: 10.1007/s11434-011-4696-4.CrossRefGoogle Scholar
  36. Wu, D., 2006: More discussions on the differences between haze and fog in city. Meteor. Mon., 32, 9–15. (in Chinese)Google Scholar
  37. Wu, D., X. X. Tie, C. C. Li, et al., 2005: An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ., 39, 6568–6577, doi: 10.1016/j.atmosenv.2005.07.061.CrossRefGoogle Scholar
  38. Wu, D., G. L. Liao, X. J. Deng, et al., 2008: Transport condition of surface layer under haze weather over the Pearl River Delta. J. Appl. Meteor. Sci., 19, 1–9. (in Chinese)Google Scholar
  39. Wu, D., X. J. Wu, F. Li, et al., 2010: Spatial and temporal variation of haze during 1951–2005 in Chinese mainland. Acta Meteor. Sinica, 68, 680–688, doi: 10.11676/qxxb2010.066. (in Chinese)Google Scholar
  40. Wu, Q. G., and X. D. Zhang, 2010: Observed forcing-feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res., 115, D14119, doi: 10.1029/2009JD013574.CrossRefGoogle Scholar
  41. Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi: 10.1175/2008JCLI2544.1.CrossRefGoogle Scholar
  42. Xie, Y. B., J. Chen, and W. Li, 2014: An assessment of PM2.5 related health risks and impaired values of Beijing residents in a consecutive high-level exposure during heavy haze days. Environ. Sci., 35, 1–8. (in Chinese)Google Scholar
  43. Xu, M., C. P. Chang, C. B. Fu, et al., 2006: Steady decline of East Asian monsoon winds, 1969–2000. Evidence from direct ground measurements of wind speed. J. Geophys. Res., 111, doi: 10.1029/2006JD007337.Google Scholar
  44. Xu, P., Y. F. Chen, and X. J. Ye, 2013: Haze, air pollution, and health in China. Lancet, 382, 2067, doi: 10.1016/S0140-6736(13)62693-8.CrossRefGoogle Scholar
  45. Zhang, L., and T. Li, 2017: Physical process responsible for the interannual variability of sea ice concentration in Arctic in boreal autumn since 1979. J. Meteor. Res., doi: 10.1007/s13351-017-6105-7.Google Scholar
  46. Zhang, R., J. Jing, J. Tao, et al., 2013: Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys., 13, 7053–7074, doi: 10.5194/acp-13-7053-2013.CrossRefGoogle Scholar
  47. Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229–241, doi: 10.1007/BF02973084.CrossRefGoogle Scholar
  48. Zhang, R. H., Q. Li, and R. N. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 26–35, doi: 10.1007/s11430-013-4774-3.CrossRefGoogle Scholar
  49. Zhang, X. Y., J. Y. Sun, Y. Q. Wang, et al., 2013: Factors contributing to haze and fog in China. Chinese Sci. Bull., 58, 1178–1187, doi: 10.1360/972013-150. (in Chinese)CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Atmospheric ScienceChina University of GeoscienceWuhanChina
  2. 2.Institute of Atmospheric Physics/Climate Change Research CenterChinese Academy of SciencesBeijingChina

Personalised recommendations