Journal of Meteorological Research

, Volume 31, Issue 6, pp 1109–1122 | Cite as

Liquid water path retrieval using the lowest frequency channels of Fengyun-3C Microwave Radiation Imager (MWRI)

Regular Articles


The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.


microwave remote sensing Fengyun-3C Microwave Radiation Imager (MWRI) liquid water path (LWP) retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the National Satellite Meteorological Center of the China Meteorological Administration for providing the FY-3C MWRI data ( All data used in this study are available from the authors upon request (


  1. Alishouse, J. C., J. B. Snider, E. R. Westwater, et al., 1990: Determination of cloud liquid water content using the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 817–822, doi: 10.1109/36.58968.CrossRefGoogle Scholar
  2. Basharinov, A. E., A. S. Gurvich, and S. T. Egorov, 1969: Determination of geophysical parameters from data on thermallyinduced radioemission obtained with the Kosmos 243 satellite. Dokl. Akad. Nauk SSSR, 188, 1273–1276.Google Scholar
  3. Baum, B. A., P. Yang, A. J. Heymsfield, et al., 2005: Bulk scattering properties for the remote sensing of ice cloud. Part II: Narrowband models. J. Appl. Meteor., 44, 1896–1911, doi: 10.1175/JAM2309.1.CrossRefGoogle Scholar
  4. Bremen, L. V., E. Ruprecht, and A. Macke, 2002: Errors in liquid water path retrieval arising from cloud inhomogeneities: The beam-filling effect. Meteor. Z., 11, 13–19, doi: 10.1127/0941-2948/2002/0011-0013.CrossRefGoogle Scholar
  5. Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part 1: Model description and simulated microphysical processes. J. Climate, 9, 489–529, doi: 10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.CrossRefGoogle Scholar
  6. Grody, N. C., 1976: Remote sensing of atmospheric water content from satellites using microwave radiometry. IEEE Trans. Antennas Propag., 24, 155–162, doi: 10.1109/TAP.1976.1141324.CrossRefGoogle Scholar
  7. Grody, N. C., A. Gruber, and W. C. Shen, 1980: Atmospheric water content over the tropical Pacific derived from the Nimbus-6 Scanning Microwave Spectrometer. J. Appl. Meteor., 8, 986–996, doi: 10.1175/1520-0450(1980)019<0986:AWCOTT>2.0.CO;2.CrossRefGoogle Scholar
  8. Grody, N. C., and R. R. Ferraro, 1992: A comparison of passive microwave rainfall retrieval methods. Proceedings of the Sixth Conference on Meteorology and Oceanography, Washington, DC, American Meteorological Society, 60–65.Google Scholar
  9. Greenwald, T. J., G. L. Stephens, T. H. V. Haar, et al., 1993: A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations. J. Geophys. Res., 98, 18471–18488, doi: 10.1029/93JD00339.CrossRefGoogle Scholar
  10. Greenwald, T. J., T. S. L’Ecuyer, and S. A. Christopher, 2007: Evaluating specific error characteristics of microwavederived cloud liquid water products. Geophys. Res. Lett., 34, L22807, doi: 10.1029/2007GL031180.CrossRefGoogle Scholar
  11. Han, Y., P. van Delst, Q. H. Liu, et al., 2005: JCSDA Community Radiative Transfer Model (CRTM)-Version 1. NOAA Technical Report NESDIS, 122, Washington, DC. 33 pp. Available at Scholar
  12. Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Science Reviews, 16, 527–610, doi: 10.1007/BF00168069.CrossRefGoogle Scholar
  13. Hargens, U., C. Simmer, and E. Ruprecht, 1992: Remote sensing of cloud liquid water during ICE’89. Third Specialists Meeting on Microwave Radiometry and Remote Sensing Applications, Boulder, Colorado, IEEE, 27–31.Google Scholar
  14. Horváth, A., and C. Gentemann, 2007: Cloud-fraction-dependent bias in satellite liquid water path retrievals of shallow, nonprecipitating marine clouds. Geophys. Res. Lett., 34, L22806, doi: 10.1029/2007GL030625.CrossRefGoogle Scholar
  15. JAXA, 2013: GCOM-W1 SHIZUKU Data Users Handbook. Japan Aerospace Exploration Agency, Tsukuba, Japan. 125 pp. Available at SHIZUKU_Data_Users_Handbook_EN.pdf.Google Scholar
  16. Kawanishi, T., T. Sezai, Y. Ito, et al., 2003: The advanced microwave scanning radiometer for the Earth observing system (AMSR-E), NASDA’S contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184–194, doi: 10.1109/TGRS.2002.808331.CrossRefGoogle Scholar
  17. Kummerow, C., J. Simpson, O. Thiele, et al., 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965–1982, doi: 10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.CrossRefGoogle Scholar
  18. Lebsock, M., and H. Su, 2014: Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals. J. Geophys. Res., 119, 8962–8979, doi: 10.1002/2014JD021568.Google Scholar
  19. Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 425–430.Google Scholar
  20. Liu, G. S., and J. A. Curry, 1993: Determination of characteristic features of cloud liquid water from satellite microwave measurements. J. Geophys. Res., 98, 5069–5092, doi: 10.1029/92JD02888.CrossRefGoogle Scholar
  21. Liu, Q. H., and F. Z. Weng, 2006: Advanced doubling-adding method for radiative transfer in planetary atmospheres. J. Atmos. Sci., 63, 3459–3465, doi: 10.1175/JAS3808.1.CrossRefGoogle Scholar
  22. Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 2813–2825, doi: 10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2.CrossRefGoogle Scholar
  23. Painemal, D., T. Greenwald, M. Cadeddu, et al., 2016: First extended validation of satellite microwave liquid water path with ship-based observations of marine low clouds. Geophys. Res. Lett., 43, 6563–6570, doi: 10.1002/2016GL069061.CrossRefGoogle Scholar
  24. Paltridge, G. W., 1980: Cloud–radiation feedback to climate. Quart. J. Roy. Meteor. Soc., 106, 895–899, doi: 10.1002/qj.49710645018.CrossRefGoogle Scholar
  25. Petty, G. W., and K. B. Katsaros, 1992: The response of the SSM/I to the marine environment. Part I: An analytic model for the atmospheric component of observed brightness temperatures. J. Atmos. Oceanic Technol., 9, 746–761, doi: 10.1175/1520-0426(1992)009<0746:TROTST>2.0.CO;2.CrossRefGoogle Scholar
  26. Prabhakara, C., J. Wang, A. T. C. Chang, et al., 1983: A statistical examination of Nimbus-7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surface wind speed. J. Climate Appl. Meteor., 22, 2033–2037, doi: 10.1175/1520-0450(1983)022<2023:ASEONS>2.0.CO;2.CrossRefGoogle Scholar
  27. Seethala, C., and Á. Horváth, 2010: Global assessment of AMSRE and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res., 115, D13202, doi: 10.1029/2009JD012662.CrossRefGoogle Scholar
  28. Stephens, G. L., and T. J. Greenwald, 1991: The Earth’s radiation budget and its relation to atmospheric hydrology. 2: Observations of cloud effects. J. Geophys. Res., 96, 15325–15340, doi: 10.1029/91JD00972.CrossRefGoogle Scholar
  29. Sun, N. H., and F. Z. Weng, 2008: Evaluation of special sensor microwave imager/sounder (SSMIS) environmental data records. IEEE Trans. Geosci. Remote Sens., 46, 1006–1016, doi: 10.1109/TGRS.2008.917368.CrossRefGoogle Scholar
  30. Tang, F., X. L. Zou, H. Yang, et al., 2016: Estimation and correction of geolocation errors in FengYun-3C microwave radiation imager data. IEEE Trans. Geosci. Remote Sens., 54, 407–420, doi: 10.1109/TGRS.2015.2458851.CrossRefGoogle Scholar
  31. Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 3799–3807, doi: 10.1175/2007JAS2112.1.CrossRefGoogle Scholar
  32. Weng, F. Z., and N. C. Grody, 1994: Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res., 99, 25535–25551, doi: 10.1029/94JD02304.CrossRefGoogle Scholar
  33. Weng, F. Z., L. M. Zhao, R. R. Ferraro, et al., 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 8068, doi: 10.1029/2002RS002679.CrossRefGoogle Scholar
  34. Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 8703–8718, doi: 10.1029/96JC01751.CrossRefGoogle Scholar
  35. Wu, S. L., and J. Chen, 2016: Instrument performance and cross calibration of FY-3C MWRI. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July, IEEE, 388–391, doi: 10.1109/IGARSS.2016.7729095.Google Scholar
  36. Yang, J., and C. H. Dong, 2010: Operational Products and Application of the New Generation Polar-Orbiting Meteorological Satellite of China. Science Press, Beijing, 368 pp. (in Chinese)Google Scholar
  37. Yang, P., and K. N. Liou, 1995: Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models. J. Opt. Soc. Amer. A, 12, 162–176, doi: 10.1364/JOSAA.12.000162.CrossRefGoogle Scholar
  38. Yang, P., H. L. Wei, H. L. Huang, et al., 2005: Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region. Appl. Opt., 44, 5512–5523, doi: 10.1364/AO.44.005512.CrossRefGoogle Scholar
  39. Yang, P., L. Bi, B. A. Baum, et al., 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330–347, doi: 10.1175/JAS-D-12-039.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Joint Center of Data Assimilation for Research and Application, College of Atmospheric ScienceNanjing University of Information Science & TechnologyNanjingChina
  2. 2.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  3. 3.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA

Personalised recommendations