Journal of Meteorological Research

, Volume 31, Issue 6, pp 1133–1148 | Cite as

Error inhomogeneity in the computation of spherical mean displacement

  • Xuezhong Wang
  • Banghui Hu
  • Hong Huang
  • Ju Wang
  • Gang Zeng
  • Yanke Tan
  • Li Zou
Regular Articles
  • 34 Downloads

Abstract

The traditional method for computing the mean displacement in latitude–longitude coordinates is a spherical meridional–zonal resultant displacement method (MRDM), which regards the displacement as the resultant vector of the meridional and zonal displacement components. However, there are inhomogeneity and singularity in the computation error of the MRDM, especially at high latitudes. Using the NCEP/NCAR long-term monthly mean wind and idealized wind fields, the inhomogeneity in the MRDM was accessed by using a great circle displacement computing method (GCDM) for non-iterative cases. The MRDM and GCDM were also compared for iteration cases by taking the trajectories from a three-time level reference method as the real trajectories. In the horizontal direction, the GCDM assumes that an air particle moves along its locating great circle and that the magnitude of the displacement equals the arc length of the great circle. The inhomogeneity of the MRDM is evaluated in terms of the horizontal distance error from the products of wind speed, lapse time, and angle difference from the GCDM displacement orient. The non-iterative results show that the mean horizontal displacement computed through the MRDM has both computational and analytical errors. The displacement error of the MRDM depends on the wind speed, wind direction, and the departure latitude of the air particle. It increases with the wind speed and the departure latitude. The displacement magnitude error has a four-wave pattern and the displacement direction error has a two-wave feature in the definition range of the wind direction. The iterative result shows that the displacement magnitude error and angle error of the MRDM and GCDM with respect to the reference method increase with the lapse time and have similar distribution patterns. The mean magnitude error and the angle error of the MRDM are nearly twice as large as those of the GCDM.

Keywords

mean displacement spherical coordinates error inhomogeneity polar singularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the anonymous reviewers for their thoughtful critiques and suggestions, which substantially improved the paper. The NCEP/NCAR reanalysis data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, at www.esrl.noaa.gov/psd/.

References

  1. Bates, J. R., F. H. M. Semazzi, R. W. Higgins, et al., 1990: Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Rev., 118, 1615–1627.CrossRefGoogle Scholar
  2. Bowman, K. P., 1993: Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds. J. Geophys. Res., 98, 23013–23027.CrossRefGoogle Scholar
  3. Bowman, K. P., and G. D. Carrie, 2002: The mean-meridional transport circulation of the troposphere in an idealized GCM. J. Atmos. Sci., 59, 1502–1514.CrossRefGoogle Scholar
  4. Bowman, K. P., J. C. Lin, A. Stohl, et al., 2013: Input data require-ments Lagrangian trajectory models. Bull. Amer. Meteor. Soc., 94, 1051–1058, doi: 10.1175/BAMS-D-12-00076.1.CrossRefGoogle Scholar
  5. Da Costa, M. V., and B. Blanke, 2004: Lagrangian methods for flow climatologies and trajectory error assessment. Ocean Model., 6, NOAA Technical Memorandum. ERL ARL-224. NOAA Air Resources Laboratory, Silver Spring, 25 pp.Google Scholar
  6. Draxler, R. R., 1999: HYSPLIT_4 User’s Guide. NOAA Technical Memorandum. ERL ARL-230. NOAA Air Resources Laboratory, Silver Spring, 35 pp. (Available at www.arl.noaa. gov/documents/reports/hysplit_user_guide.pdf)Google Scholar
  7. Draxler, R. R., and G. D. Hess, 1997: Description of the HYSPLIT_ 4 modeling system. NOAA Technical Memorandum. ERL ARL-224, NOAA Air Resources Laboratory, Silver Spring, 25 pp.Google Scholar
  8. Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_ 4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295–308.Google Scholar
  9. Fei, J. F., P. F. Wang, X. P. Cheng, et al., 2014: A regional simulation study on dispersion of nuclear pollution from the damaged Fukushima nuclear power plant. Sci. China: Earth Sci., 57, 1513–1524, doi: 10.1007/s11430-013-4811-2.CrossRefGoogle Scholar
  10. Guo, J. P., T. Niu, F. Wang, et al., 2013: Integration of multisource measurements to monitor sand-dust storms over North China: A case study. Acta Meteor. Sinica, 27, 566–576, doi: 10.1007/s13351-013-0409-z.CrossRefGoogle Scholar
  11. Harris, J. M., and J. D. W. Kahl, 1994: Analysis of 10-day isentropic flow patterns for Barrow, Alaska: 1985–1992. J. Geophys. Res., 99, 25845–25855.CrossRefGoogle Scholar
  12. Innocentini, V., 1999: A successive substitution method for the evaluation of trajectories approximating the parcel path by a linear function of space and time. Mon. Wea. Rev., 127, 1639–1650.CrossRefGoogle Scholar
  13. Jones, A. R., D. J. Thomson, M. Hort, et al., 2007: The U.K. Met Office’s Next-Generation atmospheric dispersion model, NAME III. Air Pollution Modeling and Its Application XVII, Borrego, C., and A.-L. Norman, Eds., Springer, Heidelberg, 580–589.Google Scholar
  14. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.CrossRefGoogle Scholar
  15. Kuo, Y.-H., M. Skumanich, P. L. Haagenson, et al., 1985: The accuracy of trajectory models as revealed by the observing system simulation experiments. Mon. Wea. Rev., 113, 1852–1867.CrossRefGoogle Scholar
  16. Li, L. T., and A. J. Dolman, 2016: A synoptic overview and moisture trajectory analysis of the “7.21” heavy rainfall event in Beijing. J. Meteor. Res., 30, 103–116, doi: 10.1007/s13351-016-5052-z.CrossRefGoogle Scholar
  17. Lin, J. C., C. Gerbig, S. C. Wofsy, et al., 2003: A near-field tool for simulating the upstream influence of atmospheric observations: The stochastic time-inverted Lagrangian transport (STILT) model. J. Geophys. Res., 108, 4493, doi: 10.1029/2002JD003161.Google Scholar
  18. Melvin, T., M. Dubal, N. Wood, et al., 2010: An inherently massconserving iterative semi-implicit semi-Lagrangian discretization of the non-hydrostatic vertical-slice equations. Quart. J. Roy. Meteor. Soc., 136, 799–814, doi: 10.1002/qj.603.Google Scholar
  19. Nair, R. D., and P. H. Lauritzen, 2010: A class of deformational flow test cases for linear transport problems on the sphere. J. Computat. Phys., 229, 8868–8887, doi: 10.1016/j.jcp.2010.08.014.CrossRefGoogle Scholar
  20. Notaro, M., F. Alkolibi, E. Fadda, et al., 2013: Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. Atmos., 118, 6028–6043, doi: 10.1002/jgrd.50346.CrossRefGoogle Scholar
  21. Qin, X. R., A. Sen Gupta, and E. van Sebille, 2015: Variability in the origins and pathways of Pacific equatorial undercurrent water. J. Geophys. Res. Oceans, 120, 3113–3128, doi: 10.1002/2014JC010549.CrossRefGoogle Scholar
  22. Riddle, E. E., P. B. Voss, A. Stohl, et al., 2006: Trajectory model validation using newly developed altitude-controlled balloons during the international consortium for atmospheric research on transport and transformations 2004 campaign. J. Geophys. Res., 111, D23S57, doi: 10.1029/2006JD007456.CrossRefGoogle Scholar
  23. Ritchie, H., and C. Beaudoin, 1994: Approximations and sensitivity experiments with a baroclinic semi-Lagrangian spectral model. Mon. Wea. Rev., 122, 2391–2399.CrossRefGoogle Scholar
  24. Scheele, M. P., and P. C. Siegmund, 2001: Estimating errors in trajectory forecasts using ensemble predictions. J. Appl. Meteor., 40, 1223–1232.CrossRefGoogle Scholar
  25. Scheele, M. P., P. C. Siegmund, and P. F. J. van Velthoven, 1996: Sensitivity of trajectories to data resolution and its dependence on the starting point: In or outside a tropopause fold. Meteor. Appl., 3, 267–273.CrossRefGoogle Scholar
  26. Shchekinova, E. Y., Y. Kumkar, and G. Coppini, 2016: Numerical reconstruction of trajectory of small-size surface drifter in the Mediterranean Sea. Ocean Dyn., 66, 153–161, doi: 10.1007/s10236-015-0916-9.CrossRefGoogle Scholar
  27. Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects of submesoscale turbulence on ocean tracers. J. Geophys. Res. Oceans, 121, 908–933, doi: 10.1002/2015JC011089.CrossRefGoogle Scholar
  28. Staniforth A., A. A. White, and N. Wood, 2010: Treatment of vector equations in deep-atmosphere, semi-Lagrangian models. I: Momentum equation. Quart. J. Roy. Meteor. Soc., 136, 497–506, doi: 10.1002/qj.562.Google Scholar
  29. Stohl, A., 1998: Computation, accuracy, and applications of trajectories— A review and bibliography. Atmos. Environ., 32, 947–966.CrossRefGoogle Scholar
  30. Stohl, A., L. Haimberger, M. P. Scheele, et al., 2001: An intercomparison of results from three trajectory models. Meteor. Appl., 8, 127–135.CrossRefGoogle Scholar
  31. Stohl, A., C. Forster, A. Frank, et al., 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 2461–2474.CrossRefGoogle Scholar
  32. Stohl, A., P. Seibert, G. Wotawa, et al, 2012: Xenon-133 and caesium- 137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–2343.CrossRefGoogle Scholar
  33. Temperton, C., M. Hortal, and A. Simmons, 2001: A two-timelevel semi-Lagrangian global spectral model. Quart. J. Roy. Meteor. Soc., 127, 111–127, doi: 10.1002/qj.49712757107.CrossRefGoogle Scholar
  34. Trusilova, K., C. Rödenbeck, C. Gerbig, et al., 2010: Technical note: A new coupled system for global-to-regional downscaling of CO2 concentration estimation. Atmos. Chem. Phys., 10, 3205–3213.CrossRefGoogle Scholar
  35. van Sebille, E., J. Sprintall, F. U. Schwarzkopf, et al., 2014: Pacific-to-Indian Ocean connectivity: Tasman leakage, In-donesian Throughflow, and the role of ENSO. J. Geophys. Res. Oceans, 119, 1365–1382, doi: 10.1002/2013JC009525.CrossRefGoogle Scholar
  36. Webster, H. N., D. J. Thomson, B. T. Thomson, et al., 2012: Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption. J. Geophys. Res., 117, D00U08, doi: 10.1029/2011JD016790.CrossRefGoogle Scholar
  37. Wernli, B. H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467–489.CrossRefGoogle Scholar
  38. Wood, N., A. A. White, and A. Staniforth, 2010: Treatment of vector equations in deep-atmosphere, semi-Lagrangian models. II: Kinematic equation. Quart. J. Roy. Meteor. Soc., 136, 507–516, doi: 10.1002/qj.565.Google Scholar
  39. Zhang, C., and Q. Li, 2014: Tracking the moisture sources of an extreme precipitation event in Shandong, China in July 2007: A computational analysis. J. Meteor. Res., 28, 634–644, doi: 10.1007/s13351-014-3084-9.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xuezhong Wang
    • 1
  • Banghui Hu
    • 1
  • Hong Huang
    • 1
    • 2
  • Ju Wang
    • 1
  • Gang Zeng
    • 3
  • Yanke Tan
    • 1
  • Li Zou
    • 1
  1. 1.Institute of Meteorology and OceanographyNational University of Defense TechnologyNanjingChina
  2. 2.School of Atmospheric Science and Key Laboratory of Mesoscale Severe Weather of Ministry of EducationNanjing UniversityNanjingChina
  3. 3.Key Laboratory of Meteorological Disaster of Ministry of EducationNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations