Journal of Meteorological Research

, Volume 31, Issue 6, pp 1034–1044 | Cite as

Study of aircraft icing warning algorithm based on millimeter wave radar

  • Jinhu Wang
  • Junxiang Ge
  • Qilin Zhang
  • Pan Fan
  • Ming Wei
  • Xiangchao Li
Special Collection on Aerosol-Cloud-Radiation Interactions
  • 39 Downloads

Abstract

In order to avoid accidents due to aircraft icing, an algorithm for identifying supercooled water was studied. Specifically, a threshold method based on millimeter wave radar, lidar, and radiosonde was used to retrieve the coverage area of supercooled water and a fuzzy logic algorithm was used to classify the observed meteorological targets. The macrophysical characteristics of supercooled water could be accurately identified by combing the threshold method with the fuzzy logic algorithm. In order to acquire microphysical characteristics of supercooled water in a mixed phase, the unimodal spectral distribution of supercooled water was extracted from a bimodal or trimodal spectral distribution of a mixed phase cloud, which was then used to retrieve the effective radius and liquid water content of supercooled water by using an empirical formula. These retrieved macro- and micro-physical characteristics of supercooled water can be used to guide aircrafts during takeoff, flight, and landing to avoid dangerous areas.

Keywords

supercooled water aircraft icing millimeter wave radar threshold method fuzzy logic algorithm power spectral density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Rutherford Appleton Laboratory for providing the data used in this study.

References

  1. Addy Jr, H. E., M. G. Potapczuk, and D. W. Sheldon, 1997: Modern Airfoil Ice Accretions. National Aeronautics and Space Administration, 16 pp.Google Scholar
  2. Ahrens, C. D., 1982: Meteorology Today: An Introduction to Weather, Climate, and The Environment. West Publishing Company, 20 pp.Google Scholar
  3. Alexandrov, M. D., B. Cairns, B. van Diedenhoven, et al., 2016: Polarized view of supercooled liquid water clouds. Remote Sensing of Environment, 181, 96–110, doi: 10.1016/j.rse.2016.04.002.CrossRefGoogle Scholar
  4. Al-Sakka, H., A. A. Boumahmoud, B. Fradon, et al., 2013: A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-Band polarimetric radars. J. Appl. Meteor. Climatol., 52, 2328–2344, doi: 10.1175/JAMC-D-12-0236.1.CrossRefGoogle Scholar
  5. Battan, L. J., 1964: Some observations of vertical velocities and precipitation sizes in a thunderstorm. J. Appl. Meteor., 3, 415–420, doi: 10.1175/1520-0450(1964)003<0415:SOOVVA>2.0.CO;2.CrossRefGoogle Scholar
  6. Bragg, M. B., A. P. Broeren, and L. A. Blumenthal, 2005: Iced-airfoil aerodynamics. Progress in Aerospace Sciences, 41, 323–362, doi: 10.1016/j.paerosci.2005.07.001.CrossRefGoogle Scholar
  7. Donaldson Jr., R. J., 1967: A preliminary report on Doppler radar observation of turbulence in a thunderstorm. Air Force Cambridge Research Labs, 1–19.CrossRefGoogle Scholar
  8. Eagleman, J. R., 1985: Meteorology: The Atmosphere in Action. 2nd Ed., Wadsworth Publishing Company, 50 pp.Google Scholar
  9. Gent, R. W., N. P. Dart, and J. T. Cansdale, 2000: Aircraft icing. Phil. Trans. R. Soc. A, 358, 2873–2911, doi: 10.1098/rsta.2000.0689.CrossRefGoogle Scholar
  10. Gossard, E. E., 1994: Measurement of cloud droplet size spectra by Doppler radar. J. Atmos. Oceanic Technol., 11, 712–726, doi: 10.1175/1520-0426(1994)011<0712:MOCDSS>2.0.CO;2.CrossRefGoogle Scholar
  11. Gossard, E. E., J. B. Snider, E. E., Clothiaux, et al., 1997: The potential of 8-mm radars for remotely sensing cloud drop size distributions. J. Atmos. Oceanic Technol., 13, 76–87, doi: 10.1175/1520-0426(1997)014<0076:TPOMRF>2.0.CO;2.CrossRefGoogle Scholar
  12. Hildebrand, P. H., and R. S. Sekhon, 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13, 808–811, doi: 10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2.CrossRefGoogle Scholar
  13. Inoue, T., 1987: A cloud type classification with NOAA 7 splitwindow measurements. J. Geophys. Res., 92, 3991–4000, doi: 10.1029/JD092iD04p03991.CrossRefGoogle Scholar
  14. Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2001: Simulating convective clouds with sustained supercooled liquid water down to–37.5°C using a spectral microphysics model. Geophys. Res. Lett., 28, 3887–3890, doi: 10.1029/2000GL012662.CrossRefGoogle Scholar
  15. Kollias, P., W. Szyrmer, J. Rémillard, et al., 2011: Cloud radar Doppler spectra in drizzling stratiform clouds. 2: Observations and microphysical modeling of drizzle evolution. J. Geophys. Res., 116, D13203, doi: 10.1029/2010JD015238.Google Scholar
  16. Lee, J., R. C. Weger, S. K. Sengupta, et al., 1990: A neural network approach to cloud classification. IEEE Trans. Geosci. Remote Sens., 28, 846–855, doi: 10.1109/36.58972.CrossRefGoogle Scholar
  17. Liu, C., P. Yang, P. Minnis, et al., 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys., 14, 13719–13737, doi: 10.5194/acp-14-13719-2014.CrossRefGoogle Scholar
  18. Liu, C., P. Yang, S. L. Nasiri, et al., 2015: A fast Visible Infrared Imaging Radiometer Suite simulator for cloudy atmospheres. J. Geophys. Res., 120, 240–255, doi: 10.1002/2014JD022443.Google Scholar
  19. Liu, H. P., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140–164, doi: 10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.CrossRefGoogle Scholar
  20. Luke, E. P., P. Kollias, and M. D. Shupe, 2010: Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra. J. Geophys. Res., 115, D19201, doi: 10.1029/2009JD012884.CrossRefGoogle Scholar
  21. Peng, L., H. B. Chen, and B. Li., 2011: An application of fuzzy logic method to cloud hydrometeor classifications using the ARM WACR data. Remote Sens. Technol. Appl., 26, 655–663, doi: 10.11873/j.issn.1004-0323.2011.5.655. (in Chinese)Google Scholar
  22. Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983–994, doi: 10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2.CrossRefGoogle Scholar
  23. Serke, D., E. Hall, J. Bognar, et al., 2014: Supercooled liquid water content profiling case studies with a new vibrating wire sonde compared to a ground-based microwave radiometer. Atmos. Res., 149, 77–87, doi: 10.1016/j.atmosres.2014.05.026.CrossRefGoogle Scholar
  24. Shi, C. X., and J. H. Qu, 2002: Cloud classification for NOAAAVHRR data by using a neural network. Acta Meteor. Sinica, 60, 250–255, doi: 10.11676/qxxb2002.031. (in Chinese)Google Scholar
  25. Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi: 10.1029/2007GL031008.CrossRefGoogle Scholar
  26. Shupe, M. D., P. Kollis, S. Y. Matrosov, et al., 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21, 660–670, doi: 10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2.CrossRefGoogle Scholar
  27. Wang, J. H., J. X. Ge, Q. L. Zhang, et al., 2016a: Radar cross-section measurements of ice particles using vector network analyzer. AIP Advances, 6, 095310, doi: 10.1063/1.4963080.CrossRefGoogle Scholar
  28. Wang, J. H., J. X. Ge, M. Wei, et al., 2016b: Study of the relationship between IWC and Z for nonspherical ice particles at mil-limeter wavelength. J. Trop. Meteor., 22, 78–88, doi: 10.16555/j.1006-8775.2016.S1.008.Google Scholar
  29. Wang, J. H., J. X. Ge, X. Zhu, et al., 2016c: Effect of orientation and air content of ice particles on radar reflectivity factor. J. Infrared Millim. Waves, 35, 78–86, doi: 10.11972/j.issn.1001-9014.2016.01.015. (in Chinese)Google Scholar
  30. Wu, Y. M., 2012: The influence of airfoils ice accretion on flight safety. Master dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 10 pp. (in Chinese)Google Scholar
  31. Yang, W. X., Y. Q. Zhou, J. Sun, et al., 2014: Observational studies of distribution characteristics of supercooled cloud water during a westerly trough process. Acta Meteor. Sinica, 72, 583–595, doi: 10.11676/qxxb2014.032. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jinhu Wang
    • 1
    • 2
    • 3
    • 4
  • Junxiang Ge
    • 1
    • 3
  • Qilin Zhang
    • 1
    • 2
  • Pan Fan
    • 3
  • Ming Wei
    • 1
    • 2
  • Xiangchao Li
    • 1
    • 2
  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological AdministrationNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Key Laboratory of Meteorological Disaster of Ministry of EducationNanjing University of Information Science & TechnologyNanjingChina
  3. 3.Jiangsu Key Laboratory of Meteorological Observation and Information ProcessingNanjing University of Information Science & TechnologyNanjingChina
  4. 4.National Demonstration Center for Experimental Atmospheric Science and Environmental Meteorology EducationNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations