Journal of Meteorological Research

, Volume 31, Issue 5, pp 976–986 | Cite as

Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics

  • Fei Wang
  • Yijun Zhang
  • Dong Zheng
  • Liangtao Xu
  • Wenjuan Zhang
  • Qing Meng
Regular Article
  • 23 Downloads

Abstract

A three-dimensional charge–discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge–discharge model is available. The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (Wcell-max), with the adjusted regression coefficient R2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (zini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relationship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.

Key words

lightning initiation graupel ice crystal vertical air motion cloud microphysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, M. B., A. M. Blyth, H. J. Christian, et al., 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modelling studies. Atmos. Res., 51, 221–236, doi: 10.1016/S0169-8095(99)00009-5.CrossRefGoogle Scholar
  2. Barthe, C., and M. C. Barth, 2008: Evaluation of a new lightningproduced NOx parameterization for cloud resolving models and its associated uncertainties. Atmos. Chem. Phys., 8, 4691–4710, doi: 10.5194/acp-8-4691-2008.CrossRefGoogle Scholar
  3. Barthe, C., W. Deierling, and M. C. Barth, 2010: Estimation of total lightning from various storm parameters: A cloudresolving model study. J. Geophys. Res., 115, D24202, doi: 10.1029/2010JD014405.CrossRefGoogle Scholar
  4. Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 2004–2028, doi: 10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2.CrossRefGoogle Scholar
  5. Bruning, E. C., and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 4012–4029, doi: 10.1175/JAS-D-12-0289.1.CrossRefGoogle Scholar
  6. Bruning, E. C., W. D. Rust, T. J. Schuur, et al., 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 2525–2544, doi: 10.1175/MWR3421.1.CrossRefGoogle Scholar
  7. Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, et al., 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 2199–2223, doi: 10.1175/MWR-D-12-00258.1.CrossRefGoogle Scholar
  8. Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 33–64, doi: 10.1007/BF01032000.CrossRefGoogle Scholar
  9. Carey, L. D., A. L. Bain, and R. Matthee, 2014: Kinematic and microphysical control of lightning in multicell convection over Alabama during DC3. 5th International Lightning Meteorology Conference, 20–21 March, Tucson, Arizona, USA.Google Scholar
  10. Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi: 10.1029/2007JD009598.CrossRefGoogle Scholar
  11. Dye, J. E., J. J. Jones, A. J. Weinheimer, et al., 1988: Observations within two regions of charge during initial thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 114, 1271–1290, doi: 10.1002/(ISSN)1477-870X.CrossRefGoogle Scholar
  12. Gardiner, B., D. Lamb, R. L. Pitter, et al., 1985: Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm. J. Geophys. Res., 90, 6079–6086, doi: 10.1029/JD090iD04p06079.CrossRefGoogle Scholar
  13. Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640–649, doi: 10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.CrossRefGoogle Scholar
  14. Hallett, J., and C. P. R. Saunders, 1979: Charge separation associated with secondary ice crystal production. J. Atmos. Sci., 36, 2230–2235, doi: 10.1175/1520-0469(1979)036<2230:CSAWSI>2.0.CO;2.CrossRefGoogle Scholar
  15. Hondle, K. D., and M. D. Eilts, 1994: Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning. Mon. Wea. Rev., 122, 1818–1836, doi: 10.1175/1520-0493(1994)122<1818:DRSODT>2.0.CO;2.CrossRefGoogle Scholar
  16. Hu, Z. J., and G. F. He, 1987: Numerical simulation of microprocesses in cumulonimbus clouds. I: Microphysical model. Acta Meteor. Sinica, 45, 467–484. (in Chinese)Google Scholar
  17. Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33, 103–117, doi: 10.1175/1520-0469(1976)033<0103:EFCPBF>2.0.CO;2.CrossRefGoogle Scholar
  18. Kasemir, H. W., 1960: A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res., 65, 1873–1878, doi: 10.1029/JZ065i007p01873.CrossRefGoogle Scholar
  19. Kasemir, H. W., 1984: Theoretical and experimental determination of field, charge and current on an aircraft hit by natural and triggered lightning. International Aerospace and Ground Conference on Lightning and Static Electricity, Orlando, National Interafency Coordinating Group.Google Scholar
  20. Lund, N. R., D. R. MacGorman, T. J. Schuur, et al., 2009: Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Wea. Rev., 137, 4151–4170, doi: 10.1175/2009MWR2860.1.CrossRefGoogle Scholar
  21. Makowski, J. A., D. R. MacGorman, M. I. Biggerstaff, et al., 2013: Total lightning characteristics relative to radar and satellite observations of Oklahoma mesoscale convective systems. Mon. Wea. Rev., 141, 1593–1611, doi: 10.1175/MWRD-11-00268.1.CrossRefGoogle Scholar
  22. Mansell, E. R., D. R. MacGorman, C. L. Ziegler, et al., 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophy. Res., 107, ACL 2-1–ACL 2-12, doi: 10.1029/2000JD000244.CrossRefGoogle Scholar
  23. Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100, 7097–7103, doi: 10.1029/95JD00020.CrossRefGoogle Scholar
  24. Martinez, M., 2002: The relationship between radar reflectivity and lightning activity at initial stages of convective storms. 82nd Annual Meeting, First Annual Student Conference, Orlando, Florida, 14 January, American Meteorological Society.Google Scholar
  25. Mecikalski, R. M., A. L. Bain, and L. D. Carey, 2015: Radar and lightning observations of deep moist convection across Northern Alabama during DC3: 21 May 2012. Mon. Wea. Rev., 143, 2774–2794, doi: 10.1175/MWR-D-14-00250.1.CrossRefGoogle Scholar
  26. Payne, C. D., T. J. Schuur, D. R. MacGorman, et al., 2010: Polarimetric and electrical characteristics of a lightning ring in a supercell storm. Mon. Wea. Rev., 138, 2405–2425, doi: 10.1175/2009MWR3210.1.CrossRefGoogle Scholar
  27. Pereyra, R. G., E. E. Avila, N. E. Castellano, et al., 2000: A laboratory study of graupel charging. J. Geophys. Res., 105, 20803–20812, doi: 10.1029/2000JD900244.CrossRefGoogle Scholar
  28. Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-toground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602–620, doi: 10.1175/1520-0493(1996)124<0602:CTGLOF>2.0.CO;2.CrossRefGoogle Scholar
  29. Petersen, W. A., S. A. Rutledge, R. C. Cifelli, et al., 1999: Shipborne Dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Amer. Meteor. Soc., 80, 81–97, doi: 10.1175/1520-0477(1999)080<0081:SDDODT>2.0.CO;2.CrossRefGoogle Scholar
  30. Pickering, K. E., Y. S. Wang, W. K. Tao, et al., 1998: Vertical distributions of lightning NOx for use in regional and global chemical transport models. J. Geophys. Res., 103, 31203–31216, doi: 10.1029/98JD02651.CrossRefGoogle Scholar
  31. Preston, A. D., and H. E. Fuelberg, 2015: Improving lightning cessation guidance using polarimetric radar data. Wea. Forecasting, 30, 308–328, doi: 10.1175/WAF-D-14-00031.1.CrossRefGoogle Scholar
  32. Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97, 9919–9933, doi: 10.1029/92JD00719.CrossRefGoogle Scholar
  33. Proctor, D. E., 1991: Regions where lightning flashes began. J. Geophys. Res., 96, 5099–5112, doi: 10.1029/90JD02120.CrossRefGoogle Scholar
  34. Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The down upper Doppler and electricity experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 3–16, doi: 10.1175/1520-0477(1992)073<0003:TDUDAE>2.0.CO;2.CrossRefGoogle Scholar
  35. Shackford, C. R., 1960: Radar indications of a precipitation-lightning relationship in New England thunderstorms. J. Meteor., 17, 15–19, doi: 10.1175/1520-0469(1960)017<0015:RIOAPL>2.0.CO;2.CrossRefGoogle Scholar
  36. Shi, Z., Y. B. Tan, H. Q. Tang, et al., 2015: Aerosol effect on the land–ocean contrast in thunderstorm electrification and lightning frequency. Atmos. Res., 164-165, 131–141, doi: 10.1016/j.atmosres.2015.05.006.CrossRefGoogle Scholar
  37. Shi, Z., H. Q. Tang, and Y. B. Tan, 2016: Effects of the inductive charging on the electrification and lightning discharges in thunderstorms. Terr. Atmos. Ocean. Sci., 27, 241–251, doi: 10.3319/TAO.2015.12.10.01(A).CrossRefGoogle Scholar
  38. Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548, doi: 10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.CrossRefGoogle Scholar
  39. Tan, Y. B., S. C. Tao, and B. Y. Zhu, 2006a: Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys. Res. Lett., 33, L09809, doi: 10.1029/2005GL025523.CrossRefGoogle Scholar
  40. Tan, Y. B., S. C. Tao, B. Y. Zhu, et al., 2006b: Numerical simulations of the bi-level and branched structure of intracloud lightning flashes. Sci. China Ser. D, 49, 661–672, doi: 10.1007/s11430-006-0661-5.CrossRefGoogle Scholar
  41. Tan, Y. B., S. C. Tao, B. Y. Zhu, et al., 2007: A simulation of the effects of intra-cloud lightning discharges on the charges and electrostatic potential distributions in a thundercloud. Chinese J. Geophys., 50, 1053–5065. (in Chinese)Google Scholar
  42. Tan, Y. B., S. C. Tao, Z. W. Liang, et al., 2014: Numerical study on relationship between lightning types and distribution of space charge and electric potential. J. Geophys. Res., 119, 1003–1014, doi: 10.1002/2013JD019983.Google Scholar
  43. Tan, Y. B., Z. Shi, Z. L. Chen, et al., 2017: A numerical study of aerosol effects on electrification of thunderstorms. J. Atmos. Solar–Terr. Phys., 154, 236–247, doi: 10.1016/j.jastp.2015.11.006.CrossRefGoogle Scholar
  44. Tessendorf, S. A., L. J. Miller, K. C. Wiens, et al., 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 4127–4150, doi: 10.1175/JAS3585.1.CrossRefGoogle Scholar
  45. Vincent, B. R., L. D. Carey, D. Schneider, et al., 2003: Using WSR-88D reflectivity for the prediction of cloud-to-ground lightning: A central North Carolina study. NOAA/National Weather Service Forecast Office, Newport/Morehead City, NC, 35–44.Google Scholar
  46. Wang, C. X., 2014: The relationship between vertical airflow characteristics and lightning activity of thunderstorm. Master dissertation, Chinese Academy of Meteorological Sciences, Beijing, China, 66 pp. (in Chinese)Google Scholar
  47. Wang, F., Y. J. Zhang, J. Z. Zhao, et al., 2008: The preliminary application of radar data to the lightning warning of isolated storm cells. J. Appl. Meteor. Sci., 19, 153–160. (in Chinese)Google Scholar
  48. Wang, F., W. S. Dong, Y. J. Zhang, et al., 2009: Case study of big particles effect on lightning initiation in clouds using model. J. Appl. Meteor. Sci., 20, 564–570. (in Chinese)Google Scholar
  49. Wang, F., Y. J. Zhang, D. Zheng, et al., 2015a: Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm. J. Meteor. Res., 29, 328–343, doi: 10.1007/s13351-015-4023-0.CrossRefGoogle Scholar
  50. Wang, F., Y. J. Zhang, and D. Zheng, 2015b: Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study. J. Meteor. Res., 29, 997–1010, doi: 10.1007/s13351-015-5023-9.CrossRefGoogle Scholar
  51. Wang, J., S. D. Zhou, B. Yang, et al., 2016: Nowcasting cloud-toground lightning over Nanjing area using S-band dual-polarization Doppler radar. Atmos. Res., 178-179, 55–64, doi: 10.1016/j.atmosres.2016.03.007.CrossRefGoogle Scholar
  52. Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151–4177, doi: 10.1175/JAS3615.1.CrossRefGoogle Scholar
  53. Williams, E. R., 1985: Large-scale charge separation in thunderclouds. J. Geophys. Res., 90, 6013–6025, doi: 10.1029/JD090iD04p06013.CrossRefGoogle Scholar
  54. Williams, E. R., and R. M. Lhermitte, 1983: Radar tests of the precipitation hypothesis for thunderstorm electrification. J. Geophys. Res., 88, 10984–10992, doi: 10.1029/JC088iC15p10984.CrossRefGoogle Scholar
  55. Workman, E. J., and S. E. Reynolds, 1949: Electrical activity as related to thunderstorm cell growth. Bull. Amer. Meteor. Soc., 30, 142–144.Google Scholar
  56. Zheng, D., and D. R. MacGorman, 2016: Characteristics of flash initiations in a supercell cluster with tornadoes. Atmos. Res., 167, 249–264, doi: 10.1016/j.atmosres.2015.08.015.CrossRefGoogle Scholar
  57. Zhou, Z. M., and X. L. Guo, 2009: 3D modeling on relationships among intracloud lightning, updraft and liquid water content in a severe thunderstorm case. Climatic Environ. Res., 14, 31–44. (in Chinese)Google Scholar
  58. Ziegler, C. L., D. R. MacGorman, J. E. Dye, et al., 1991: A model evaluation of noninductive graupel–ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12833–12855, doi: 10.1029/91JD01246.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Fei Wang
    • 1
    • 2
  • Yijun Zhang
    • 1
    • 2
  • Dong Zheng
    • 1
    • 2
  • Liangtao Xu
    • 1
    • 2
  • Wenjuan Zhang
    • 1
    • 2
  • Qing Meng
    • 1
    • 2
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Laboratory of Lightning Physics and Protection EngineeringChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations