Journal of Meteorological Research

, Volume 31, Issue 5, pp 874–889 | Cite as

Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model

  • Caiyan Lin
  • Zhongfeng Zhang
  • Zhaoxia Pu
  • Fengyun Wang
Regular Article
  • 8 Downloads

Abstract

A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.

Key words

advection fog physical parameterization numerical prediction forecast lead time WRF model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bang, C. H., J. W. Lee, and S. Y. Hong, 2009: Predictability experiments of fog and visibility in local airports over Korea using the WRF model. J. Korean Soc. Atmos. Environ., 24, 92–101.Google Scholar
  2. Bari, D., T. Bergot, and M. El Khlifi, 2015: Numerical study of a coastal fog event over Casablanca, Morocco. Quart. J. Roy. Meteor. Soc., 141, 1894–1905, doi: 10.1002/qj.2494.CrossRefGoogle Scholar
  3. Bergot, T., and D. Guedalia, 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122, 1218–1230, doi: 10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO;2.CrossRefGoogle Scholar
  4. Bergot, T., E. Terradellas, J. Cuxart, et al., 2007: Intercomparison of single-column numerical models for the prediction of radiation fog. J. Appl. Meteor. Climatol., 46, 504–521, doi: 10.1175/JAM2475.1.CrossRefGoogle Scholar
  5. Bieringer, P. E., M. Donovan, F. Robasky, et al., 2006: A characterization of NWP ceiling and visibility forecasts for the terminal airspace. Preprints, 12th Conference on Aviation Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 3 pp. [Accessed 10 July 2017 at http://ams.confex.com/ams/Annual2006/techprogram/paper_103720.htm].Google Scholar
  6. Bott, A., and T. Trautmann, 2002: PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos. Res., 64, 191–203, doi: 10.1016/S0169-8095(02)00091-1.CrossRefGoogle Scholar
  7. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.CrossRefGoogle Scholar
  8. Clark, P. A., and W. P. Hopwood, 2001a: One-dimensional sitespecific forecasting of radiation fog. Part I: Model formulation and idealized sensitivity studies. Meteor. Appl., 8, 279–286, doi: 10.1017/S1350482701003036.CrossRefGoogle Scholar
  9. Clark, P. A., and W. P. Hopwood, 2001b: One-dimensional sitespecific forecasting of radiation fog. Part II: Impact of site observations. Meteor. Appl., 8, 287–296.Google Scholar
  10. Creighton, G., E. Kuchera, R. Adams-Selin, et al., 2014: AFWA Diagnostics in WRF. [Accessed 10 July 2017 at http://www2.mmm.ucar.edu/wrf/users/docs/AFWA_Diagnostics_in_WRF.pdf].Google Scholar
  11. Doran, J. A., P. J. Roohr, D. J. Beberwyk, et al., 1999: The MM5 at the Air Force Weather Agency—New products to support military operations. The 8th Conference on Aviation, Range, and Aerospace Meteorology, NOAA/NWS, Dallas, Texas.Google Scholar
  12. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  13. Fabbian, D., R. de Dear, and S. Lellyett, 2007: Application of artificial neural network forecasts to predict fog at Canberra International Airport. Wea. Forecasting, 22, 372–381, doi: 10.1175/WAF980.1.CrossRefGoogle Scholar
  14. Fels, S. B., and M. D. Schwarzkopf, 1981: An efficient, accurate al-gorithm for calculating CO2 15 μm band cooling rates. J. Geo-phys. Res., 86, 1205–1232, doi: 10.1029/JC086iC02p01205.CrossRefGoogle Scholar
  15. Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156, doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.CrossRefGoogle Scholar
  16. Fu, G., P. Y. Li, J. G. Crompton, et al., 2010: An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003. Meteor. Atmos. Phys., 107, 149–159, doi: 10.1007/s00703-010-0073-0.CrossRefGoogle Scholar
  17. Golding, B. W., 1993: A study of the influence of terrain on fog development. Mon. Wea. Rev., 121, 2529–2541, doi: 10.1175/1520-0493(1993)121<2529:ASOTIO>2.0.CO;2.CrossRefGoogle Scholar
  18. Gu, Y., K. N. Liou, S. C. Ou, et al., 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi: 10.1029/2010JD014574.Google Scholar
  19. Gultepe, I., and J. A. Milbrandt, 2010: Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. J. Appl. Meteor. Climatol., 49, 36–46, doi: 10.1175/2009JAMC1927.1.CrossRefGoogle Scholar
  20. Gultepe, I., M. D. Müller, and Z. Boybeyi, 2006: A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteor., 45, 1469–1480, doi: 10.1175/JAM2423.1.CrossRefGoogle Scholar
  21. Gultepe, I., R. Tardif, S. C. Michaelides, et al., 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 1121–1159, doi: 10.1007/s00024-007-0211-x.CrossRefGoogle Scholar
  22. Gultepe, I., B. Hansen, S. G. Cober, et al., 2009: The fog remote sensing and modeling field project. Bull. Amer. Meteor. Soc., 90, 341–359, doi: 10.1175/2008BAMS2354.1.CrossRefGoogle Scholar
  23. Gultepe, I., B. Zhou, J. Milbrandt, et al., 2015: A review on ice fog measurements and modeling. Atmos. Res., 151, 2–19, doi: 10.1016/j.atmosres.2014.04.014.CrossRefGoogle Scholar
  24. Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6- class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.Google Scholar
  25. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi: 10.1175/MWR 3199.1.CrossRefGoogle Scholar
  26. Hu, H. Q., Q. H. Zhang, B. G. Xie, et al., 2014: Predictability of an advection fog event over North China. Part I: Sensitivity to initial condition differences. Mon. Wea. Rev., 142, 1803–1822, doi: 10.1175/MWR-D-13-00004.1.CrossRefGoogle Scholar
  27. Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, doi: 10.1029/2008JD009944.Google Scholar
  28. Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.CrossRefGoogle Scholar
  29. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  30. Kim, C. K., and S. S. Yum, 2012: A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the Weather Research and Forecasting Model. Bound.-Layer Meteor., 143, 481–505, doi: 10.1007/s10546-012-9706-9.CrossRefGoogle Scholar
  31. Li, Y. P., and Y. X. Zheng, 2015: Analysis of atmospheric turbulence in the upper layers of sea fog. Chinese J. Oceanol. Limnol., 33, 809–818, doi: 10.1007/s00343-015-4030-0.CrossRefGoogle Scholar
  32. Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, doi: 10.1175/2009MWR2968.1.CrossRefGoogle Scholar
  33. Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.CrossRefGoogle Scholar
  34. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, doi: 10.1029/97JD00237.Google Scholar
  35. Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of oneand two-moment schemes. Mon. Wea. Rev., 137, 991–1007, doi: 10.1175/2008MWR2556.1.CrossRefGoogle Scholar
  36. Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397–407, doi: 10.1007/s10546-005-9030-8.CrossRefGoogle Scholar
  37. Niu, S. J., C. S. Lu, H. Y. Yu, et al., 2010: Fog research in China: An overview. Adv. Atmos. Sci., 27, 639–662, doi: 10.1007/s00376-009-8174-8.CrossRefGoogle Scholar
  38. Pagowski, M., I. Gultepe, and P. King, 2004: Analysis and modeling of an extremely dense fog event in southern Ontario. J. Appl. Meteor., 43, 3–16, doi: 10.1175/1520-0450(2004)043<0003:AAMOAE>2.0.CO;2.CrossRefGoogle Scholar
  39. Payra, S., and M. Mohan, 2014: Multirule based diagnostic approach for the fog predictions using WRF modelling tool. Adv. Meteor., 2014, 456065, doi: 10.1155/2014/456065.CrossRefGoogle Scholar
  40. Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383–1395, doi: 10.1175/JAM2539.1.CrossRefGoogle Scholar
  41. Radi, A., A. A. Al-Katheri, and K. Al-Chergui, 2008: Evaluation of United Arab Emirates WRF two-way nested model on a set of thick coastal fog situations. [Accessed 10 July 2017 at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2008/ab stracts/P8-06.pdf].Google Scholar
  42. Rémy, S., O. Pannekoucke, T. Bergot, et al., 2012: Adaptation of a particle filtering method for data assimilation in a 1D numerical model used for fog forecasting. Quart. J. Roy. Meteor. Soc., 138, 536–551, doi: 10.1002/qj.v138.663.CrossRefGoogle Scholar
  43. Román-Cascón, C., C. Yagüe, M. Sastre, et al., 2012: Observations and WRF simulations of fog events at the Spanish Northern Plateau. Adv. Sci. Res., 8, 11–18, doi: 10.5194/asr-8-11-2012.CrossRefGoogle Scholar
  44. Román-Cascón, C., G. J. Steeneveld, C. Yagüe, et al., 2016: Forecasting radiation fog at climatologically contrasting sites: Evaluation of statistical methods and WRF. Quart. J. Roy. Meteor. Soc., 142, 1048–1063, doi: 10.1002/qj.2016.142.issue-695.CrossRefGoogle Scholar
  45. Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR, doi: 10.5065/D68S4MVH.Google Scholar
  46. Steeneveld, G. J., R. J. Ronda, and A. A. M. Holtslag, 2015: The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound.-Layer Meteor., 154, 265–289, doi: 10.1007/s10546-014-9973-8.CrossRefGoogle Scholar
  47. Stoelinga, M. T., and T. T. Warner, 1999: Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. J. Appl. Meteor., 38, 385–404, doi: 10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2.CrossRefGoogle Scholar
  48. Stolaki, S., I. Pytharoulis, and T. Karacostas, 2012: A study of fog characteristics using a coupled WRF–COBEL model over Thessaloniki airport, Greece. Pure Appl. Geophys., 169, 961–981, doi: 10.1007/s00024-011-0393-0.CrossRefGoogle Scholar
  49. Tang, Y. M., R. Capon, R. Forbes, et al., 2009: Fog prediction using a very high resolution numerical weather prediction model forced with a single profile. Meteor. Appl., 16, 129–141, doi: 10.1002/met.v16:2.CrossRefGoogle Scholar
  50. Tardif, R., 2007: The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study. Pure Appl. Geophys., 164, 1221–1240, doi: 10.1007/s00024-007-0216-5.CrossRefGoogle Scholar
  51. Tardif, R., and R. M. Rasmussen, 2007: Event-based climatology and typology of fog in the New York city region. J. Appl. Meteor. Climatol., 46, 1141–1168, doi: 10.1175/JAM2516.1.CrossRefGoogle Scholar
  52. Thompson, G., P. R. Field, R. M. Rasmussen, et al., 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, doi: 10.1175/2008MWR2387.1.CrossRefGoogle Scholar
  53. Tudor, M., 2010: Impact of horizontal diffusion, radiation and cloudiness parameterization schemes on fog forecasting in valleys. Meteor. Atmos. Phys., 108, 57–70, doi: 10.1007/s00703-010-0084-x.CrossRefGoogle Scholar
  54. Van der Velde, I. R., G. J. Steeneveld, B. G. J. W. Schreur, et al., 2010: Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Wea. Rev., 138, 4237–4253, doi: 10.1175/2010MWR3427.1.CrossRefGoogle Scholar
  55. von Glasow, R., and A. Bott, 1999: Interaction of radiation fog with tall vegetation. Atmos. Environ., 33, 1333–1346, doi: 10.1016/S1352-2310(98)00372-0.CrossRefGoogle Scholar
  56. Yuan, X., and Z. H. Chen, 2013: Statistics and monitoring analysis of advection fog at Shanghai Pudong Airport. J. Meteor. Sci., 33, 95–101, doi: 10.3969/2012jms.0149. (in Chinese)Google Scholar
  57. Zhou, B. B., 2011: Introduction to A New Fog Diagnostic Scheme. NCEP Office Note 466, 43 pp. [Accessed 10 July 2017 at www.emc.ncep.noaa.gov/officenotes/newernotes/on466.pdf].Google Scholar
  58. Zhou, B. B., and J. Du, 2010: Fog prediction from a multimodel mesoscale ensemble prediction system. Wea. Forecasting, 25, 303–322, doi: 10.1175/2009WAF2222289.1.CrossRefGoogle Scholar
  59. Zhou, B. B., J. Du, I. Gultepe, et al., 2012: Forecast of low visibility and fog from NCEP: Current status and efforts. Pure Appl. Geophys., 169, 895–909, doi: 10.1007/s00024-011-0327-x.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Caiyan Lin
    • 1
  • Zhongfeng Zhang
    • 1
  • Zhaoxia Pu
    • 2
  • Fengyun Wang
    • 3
  1. 1.Aviation Meteorological Center, Air Traffic Management BureauCivil Aviation Administration of ChinaBeijingChina
  2. 2.Department of Atmospheric SciencesUniversity of UtahSalt Lake CityUSA
  3. 3.Meteorological Center, East China Air Traffic Management BureauCivil Aviation Administration of ChinaShanghaiChina

Personalised recommendations