Journal of Meteorological Research

, Volume 31, Issue 4, pp 665–677 | Cite as

Interannual variability of summertime outgoing longwave radiation over the Maritime Continent in relation to East Asian summer monsoon anomalies



The Maritime Continent (MC) is under influences of both the tropical Pacific and the Indian Ocean. Anomalous convective activities over the MC have significant impacts on the East Asian summer monsoon (EASM) and climate in China. In the present study, the variation in convective activity over the MC in boreal summer and its relationship to EASM anomalies are investigated based on regression analysis of NCEP–NCAR reanalysis and CMAP [Climate Prediction Center (CPC) Merged Analysis of Precipitation] data, with a focus on the impacts of ENSO and the Indian Ocean Dipole (IOD). The most significant interannual variability of convective activity is found over 10°S–10°N, 95°–145°E, which can be roughly defined as the key area of the MC (hereafter, KMC). Outgoing longwave radiation anomaly (OLRA) exhibits 3- to 7-yr periodicities over the KMC, and around 70% of the OLRA variance can be explained by the ENSO signal. However, distinct convection and precipitation anomalies still exist over this region after the ENSO and IOD signals are removed. Abnormally low precipitation always corresponds to positive OLRA over the KMC when negative diabatic heating anomalies and anomalous cooling of the atmospheric column lead to abnormal descending motion over this region. Correspondingly, abnormal divergence occurs in the lower troposphere while convergence occurs in the upper troposphere, triggering an East Asia–Pacific/Pacific–Japan (EAP/PJ)-like anomalous wave train that propagates northeastward and leads to a significant positive precipitation anomaly from the Yangtze River valley in China to the islands of Japan. This EAP/PJ-like wave pattern becomes even clearer after the removal of the ENSO signal and the combined effects of ENSO and IOD, suggesting that convective anomalies over the KMC have an important impact on EASM anomalies. The above results provide important clues for the prediction of EASM anomalies and associated summer precipitation anomalies in China.

Key words

Maritime Continent convective activity ENSO Indian Ocean Dipole (IOD) East Asian summer monsoon (EASM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M. A., I. Bladé, M. Newman, et al., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520-0442(2002)015<2205:tabtio>;2.CrossRefGoogle Scholar
  2. Araki, R., M. D. Yamanaka, F. Murata, et al., 2006: Seasonal and interannual variations of diurnal cycles of wind and cloud activity observed at Serpong, West Jawa, Indonesia. J. Meteor. Soc. Japan, 84, 171–194, doi: 10.2151/jmsj.84a.171.CrossRefGoogle Scholar
  3. Ashok, K., Z. Y. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett,. 28, 4499–4502, doi: 10.1029/2001gl013294.CrossRefGoogle Scholar
  4. Ashok, K., Z. Y. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean Dipole. J. Meteor. Soc. Japan, 81, 41–56, doi: 10.2151/jmsj.81.41.CrossRefGoogle Scholar
  5. Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15, 1358–1368, doi: 10.1175/1520-0442(2002)015<1358:odvoss>;2.CrossRefGoogle Scholar
  6. Chang, C.-P., Z. Wang, J. H. Ju, et al., 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665–672, doi: 10.1175/1520-0442(2004)017<0665:otrbwm>;2.CrossRefGoogle Scholar
  7. Chen, X. L., and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific–Japan pattern interannual variability. J. Geophys. Res,. 119, 13043–13066, doi: 10.1002/2014jd022064.Google Scholar
  8. Ding, Y. H., C. Y. Li, J. H. He, et al., 2004: South China Sea monsoon experiment (SCSMEX) and the East Asian monsoon. Acta Meteor. Sinica, 62, 561–586, doi: 10.11676/qxxb 2004.057. (in Chinese)Google Scholar
  9. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.CrossRefGoogle Scholar
  10. Guan, Z. Y., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, doi: 10.1029/2002gl016831.CrossRefGoogle Scholar
  11. Hackert, E. C., and S. Hastenrath, 1986: Mechanisms of Java rainfall anomalies. Mon. Wea. Rev,. 114, 745–75,7 doi: 10.1175/1520-0493(1986)114<0745:MOJRA>2.0.CO;2.CrossRefGoogle Scholar
  12. Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climat,e 16, 1775–1790, doi: 10.1175/1520-0442(2003)016<1775:IRVIOE> 2.0.CO;2.CrossRefGoogle Scholar
  13. Huang, R. H., 1987: Influence of the heat source anomaly over the tropical western Pacific on the subtropical high over East Asia. International Conference on the General Circulation of East Asia, Chengdu, China, 10–15 April, 40–51.Google Scholar
  14. Huang, R. H., 1990: Studies on the teleconnections of the general circulation anomalies of East Asia causing the summer drought and flood in China and their physical mechanism. Chinese J. Atmos. Sci., 14, 108–117, doi: 10.3878/j.issn.1006- 9895.1990.01.14. (in Chinese)Google Scholar
  15. Huo, L. W., and D. C. Jin, 2016: The interannual relationship between anomalous precipitation over southern China and the south eastern tropical Indian Ocean sea surface temperature anomalies during boreal summer. Atmos. Sci. Lett,. 17, 610–615, doi: 10.1002/asl.710.CrossRefGoogle Scholar
  16. Jin, D. C., S. N. Hameed, and L. W. Huo, 2016: Recent changes in ENSO teleconnection over the western Pacific impacts the eastern China precipitation dipole. J. Climate, 29, 7587–7598, doi: 10.1175/JCLI-D-16-0235.1.CrossRefGoogle Scholar
  17. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077<0437: tnyrp>;2.CrossRefGoogle Scholar
  18. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  19. Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008jcli2309.1.CrossRefGoogle Scholar
  20. Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.Google Scholar
  21. Liu, C. H., and M. W. Moncrieff, 1998: A numerical study of the diurnal cycle of tropical oceanic convection. J. Atmos. Sci., 55, 2329–2344, doi: 10.1175/1520-0469(1998)055<2329:ansotd>;2.CrossRefGoogle Scholar
  22. Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966–989, doi: 10.1175/1520- 0493(1984)112<0966:tlscah>;2.CrossRefGoogle Scholar
  23. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci,. 29, 1109–1123, doi: 10.1175/1520-0469(1972) 029<1109:dogscc>;2.CrossRefGoogle Scholar
  24. McBride, J. L., M. R. Haylock, and N. Nicholls, 2003: Relationships between the Maritime Continent heat source and the El Niño–Southern Oscillation phenomenon. J. Climate, 16, 2905–2914, doi: 10.1175/1520-0442(2003)016<2905:rbtmch>;2.CrossRefGoogle Scholar
  25. Meng, W., and G. X. Wu, 2000: Gearing between the Indo-monsoon circulation and the Pacific–Walker circulation and the ENSO. Part II: Numerical simulation. Chinese J. Atmos. Sci, 24, 15–25. (in Chinese)Google Scholar
  26. Mori, S., J- I. Hamada, Y. I. Tauhid, et al., 2004: Diurnal land–sea rainfall peak migration over Sumatra island, Indonesian Maritime Continent observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 2021–2039, doi: 10.1175/1520-0493(2004)132<2021:dlrpmo>;2.CrossRefGoogle Scholar
  27. Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834–848, doi: 10.1175/1520-0442(2003)016<0834:tmcair>;2.CrossRefGoogle Scholar
  28. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390, doi: 10.2151/jmsj1965.65.3_373.CrossRefGoogle Scholar
  29. Oh, J.-H., K.-Y. Kim, and G.-H. Lim, 2012: Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dyn., 38, 1167–1180, doi: 10.1007/s00382-011-1237-4.CrossRefGoogle Scholar
  30. Oh, J.-H., B.-M. Kim, K.-Y. Kim, et al., 2013: The impact of the diurnal cycle on the MJO over the Maritime Continent: A modeling study assimilating TRMM rain rate into global analysis. Climate Dyn., 40, 893–911, doi: 10.1007/s00382-012- 1419-8.CrossRefGoogle Scholar
  31. Qian, W. H., H. R. Hu, Y. Deng, et al., 2012: Signals of interannual and interdecadal variability of air–sea interaction in the basinwide Indian Ocean. Atmosphere-Ocean, 40, 293–311, doi: 10.3137/ao.400302.CrossRefGoogle Scholar
  32. Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365–370, doi: 10.1175/1520-0493(1968)096<0365:roatmc>;2.CrossRefGoogle Scholar
  33. Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25, 151–169, doi: 10.3354/cr025151.CrossRefGoogle Scholar
  34. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363, doi: 10.1038/43854.Google Scholar
  35. Shibagaki, Y., T. Shimomai, T. Kozu, et al., 2006: Multiscale aspects of convective systems associated with an intraseasonal oscillation over the Indonesian Maritime Continent. Mon. Wea. Rev., 134, 1682–1696, doi: 10.1175/mwr3152.1.CrossRefGoogle Scholar
  36. Song, Q., and A. L. Gordon, 2004: Significance of the vertical profile of the Indonesian throughflow transport to the Indian Ocean. Geophys. Res. Lett,. 31, L16307, doi: 10.1029/2004gl020360.CrossRefGoogle Scholar
  37. Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology. Chang, C.-P., and T. N. Krishnamurti, Eds., Oxford, Oxford University Press, 60–92.Google Scholar
  38. Teo, C.-K., T.-Y. Koh, J. C.-F. Lo, et al., 2011: Principal component analysis of observed and modeled diurnal rainfall in the Maritime Continent. J. Climat,e 24, 4662–467,5 doi: 10.1175/2011jcli4047.1.CrossRefGoogle Scholar
  39. Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc,. 79, 61–78, doi: 10.1175/1520-0477(1998)079<0061:apgtwa>;2.CrossRefGoogle Scholar
  40. Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO-monsoon system. J. Climate, 12, 2679–2690, doi: 10.1175/1520-0442(1999)012<2679:icitem>;2.CrossRefGoogle Scholar
  41. Wang, B., J.-Y. Lee, and B. Q. Xiang, 2015: Asian summer monsoon rainfall predictability: A predictable mode analysis. Climate Dyn., 44, 61–74, doi: 10.1007/s00382-014-2218-1.CrossRefGoogle Scholar
  42. Wang, L. J., S. H. Guo, and J. Ge, 2016: The timing of South Asian high establishment and its relation to tropical Asian summer monsoon and precipitation over east–central China in summer. J. Trop. Meteor., 22, 136–144.Google Scholar
  43. Wu, C.-H., and H.-H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 5433–5448, doi: 10.1175/2009jcli2825.1.CrossRefGoogle Scholar
  44. Wu, J., X. F. Xu, F. F. Jin, et al., 2013: Research of the intraseasonal evolution of the East Asian Pacific pattern and the maintenance mechanism. Acta Meteor. Sinica, 71, 476–491, doi: 10.11676/qxxb2013.038. (in Chinese)Google Scholar
  45. Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, doi: 10.1175/1520-0477(1997)078<2539: gpayma>;2.CrossRefGoogle Scholar
  46. Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci,. 30, 611–627, doi: 10.1175/1520-0469(1973)030<0611:dobpot>;2.CrossRefGoogle Scholar
  47. Yang, H., X. L. Jia, and C. Y. Li, 2006: The tropical Pacific–Indian Ocean temperature anomaly mode and its effect. Chinese Sci. Bull., 51, 2878–2884, doi: 10.1007/s11434-006-2199-5.CrossRefGoogle Scholar
  48. Zhou, L., and R. Murtugudde, 2010: Influences of Madden–Julian oscillations on the eastern Indian Ocean and the maritime continent. Dyn. Atmos. Oceans, 50, 257–274, doi: 10.1016/j.dynatmoce.2009.12.003.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations