Journal of Meteorological Research

, Volume 31, Issue 4, pp 720–730

Assimilation of HY-2A scatterometer ambiguous winds based on feature thinning

  • Boheng Duan
  • Weimin Zhang
  • Xiaoqun Cao
  • Yi Yu
  • Haijin Dai
Article
  • 22 Downloads

Abstract

This paper focuses on the data assimilation methods for sea surface winds, based on the level-2B HY-2A satellite microwave scatterometer wind products. We propose a new feature thinning method, which is herein used to screen scatterometer winds while maintaining the key structure of the wind field in the process of data thinning for highresolution satellite observations. We also accomplish feeding the ambiguous wind solutions directly into the data assimilation system, thus making better use of the retrieved information while simplifying the assimilation process of the scatterometer products. A numerical simulation experiment involving Typhoon Danas shows that our method gives better results than the traditional approach. This method may be a valuable alternative for operational satellite data assimilation.

Key words

data assimilation HY-2A scatterometer feature thinning ambiguous winds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, E., J. Haseler, P. Undén, et al., 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). III: Experimental results. Quart. J. Roy. Meteor. Soc., 124, 1831–1860, doi: 10.1002/(ISSN)1477-870X.CrossRefGoogle Scholar
  2. Barker, D. M., W. Huang, Y.-R. Guo, et al., 2004: A threedimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897–914, doi: 10.1175/1520-0493(2004)132<0897:ATVDAS> 2.0.CO;2.CrossRefGoogle Scholar
  3. Bauer, P., R. Buizza, C. Cardinali, et al., 2011: Impact of singularvector- based satellite data thinning on NWP. Quart. J. Roy. Meteor. Soc., 137, 286–302, doi: 10.1002/qj.v137.655.CrossRefGoogle Scholar
  4. Gratton, S., M. Rincon-Camacho, E. Simon, et al., 2015: Observation thinning in data assimilation computations. EURO Journal on Computational Optimization, 3, 31–51, doi: 10.1007/s13675-014-0025-4.CrossRefGoogle Scholar
  5. Hilburn, K. A., F. J. Wentz, D. K. Smith, et al., 2006: Correcting active scatterometer data for the effects of rain using passive radiometer data. J. Climate Appl. Meteor., 45, 382–398, doi: 10.1175/JAM2357.1.CrossRefGoogle Scholar
  6. Li, X. C., J. Zhu, Y. G. Xiao, et al., 2010: A model-based observation- thinning scheme for the assimilation of high-resolution SST in the shelf and coastal seas around China. J. Atmos. Oceanic Techno,l. 27, 1044–1058, doi: 10.1175/2010 JTECHO709.1.CrossRefGoogle Scholar
  7. Lin, M. S., X. W. Jiang, and X. T. Xie, 2010: Simulation of HY-2 scatterometer and analysis of wind field retrieval. Proceedings of the SPIE 7807, Earth Observing Systems XV, San Diego, California, United States, 23 September, SPIE, 78070X.Google Scholar
  8. Lin, M. S., J. H. Zou, X. T. Xie, et al., 2013: HY-2A microwave scatterometer wind retrieval algorithm. Engineering Sciences, 15, 68–74. (in Chinese)Google Scholar
  9. Ochotta, T., C. Gebhardt, D. Saupe, et al., 2005: Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. Quart. J. Roy. Meteor. Soc., 131, 3427–3437, doi: 10.1256/qj.05.94.CrossRefGoogle Scholar
  10. Prasad, V. S., A. Gupta, E. N. Rajagopal, et al., 2013: Impact of OSCAT surface wind data on T574L64 assimilation and forecasting system—A study involving tropical cyclone Thane. Curr. Sci., 104, 627–631.Google Scholar
  11. Rogers, R., S. Y. Chen, J. Tenerelli, et al., 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577–1599, doi: 10.1175//2546.1.CrossRefGoogle Scholar
  12. Vogelzang, J., 2007: Two dimensional variational ambiguity removal (2DVAR). Technical Report NWPSAF-KN-TR-004, EUMETSAT, 62 pp.Google Scholar
  13. Wang, X. N., L. X. Liu, H. Q. Shi, et al., 2012: In-orbit calibration and performance evaluation of HY-2 scatterometer. Proceedings of IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), Munich, 22–27 July, IEEE, 4614–4616.Google Scholar
  14. Yu, Y., W. M. Zhang, Z. Y. Wu, et al., 2015: Assimilation of HY- 2A scatterometer sea surface wind data in a 3DVAR data assimilation system—A case study of Typhoon Bolaven. Front. Earth Sci., 9, 192–201, doi: 10.1007/s11707-014-0461-8.CrossRefGoogle Scholar
  15. Zhang, F. Q., Y. H. Weng, J. A. Sippel, et al., 2009: Cloudresolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105–2125, doi: 10.1175/2009MWR2645.1.CrossRefGoogle Scholar
  16. Zhang, L., S. X. Huang, Y. D. Liu, et al., 2010: Variational assimilation combined with generalized variational optimization analysis for sea surface wind retrieval from microwave scatterometer data. Acta Phys. Sinica, 59, 2889–2897. (in Chinese)Google Scholar
  17. Zhang, Y., M. S. Lin, Q. T. Song, et al., 2013: Research on the preprocessing of HY-2A space-borne scatterometer data. Engineering Sciences, 15, 62–67. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Boheng Duan
    • 1
  • Weimin Zhang
    • 1
  • Xiaoqun Cao
    • 1
  • Yi Yu
    • 1
  • Haijin Dai
    • 1
  1. 1.Academy of Ocean Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations