Journal of Meteorological Research

, Volume 31, Issue 4, pp 708–719 | Cite as

Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series

  • Min Min
  • Chunqiang Wu
  • Chuan Li
  • Hui Liu
  • Na Xu
  • Xiao Wu
  • Lin Chen
  • Fu Wang
  • Fenglin Sun
  • Danyu Qin
  • Xi Wang
  • Bo Li
  • Zhaojun Zheng
  • Guangzhen Cao
  • Lixin Dong
Article
  • 19 Downloads

Abstract

Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.

Key words

geostationary meteorological satellite FY-4 algorithm testbed cloud properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, S. A., R. E. Holz, R. Frey, et al., 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Ocean. Technol., 25, 1073–1086, doi: 10.1175/2007JTECHA1053.1.CrossRefGoogle Scholar
  2. Ackerman, S., R. Frey, K. Strabala, et al., 2010: Discriminating Clear-Sky from Cloud with MODIS—Algorithm Theoretical Basis Document (MOD35) Version 6.1, Tech. rep., MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, 117 pp. Available online at https://modis-atmos.gsfc.nasa.gov/_docs/MOD35_ ATBD_Collection6.pdf (accessed on 12 May 2017).Google Scholar
  3. Cao, D. J., F. X. Huang, and X. S. Qie, 2014: Development and evaluation of detection algorithm for FY-4 geostationary lightning imager (GLI) measurement. Proceedings of XV International Conference on Atmospheric Electricity, Norman, Oklahoma, U.S.A.Google Scholar
  4. Comiso, J. C., D. J. Cavalieri, and T. Markus, 2003: Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Trans. Geosci. Remote Sens., 41, 243–252, doi: 10.1109/TGRS.2002.808317.CrossRefGoogle Scholar
  5. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc,. 137, 553–597, doi: 10.1002/qj.v137.656.CrossRefGoogle Scholar
  6. Eyre, J. R., and H. M. Woolf, 1988: Transmittance of atmospheric gases in the microwave region: A fast model. Appl. Opt., 27, 3244–3249, doi: 10.1364/AO.27.003244.CrossRefGoogle Scholar
  7. Goodman, S. J., R. J. Blakeslee, W. J. Koshak, et al., 2013: The GOES-R geostationary lightning mapper (GLM). Atmos. Res., 125–126, 34–39, doi: 10.1016/j.atmosres.2013.01.006.CrossRefGoogle Scholar
  8. Greenwald, T. J., R. B. Pierce, T. Schaack, et al., 2016: Real-time simulation of the GOES-R ABI for user readiness and product evaluation. Bull. Amer. Meteor. Soc,. 97, 245–261, doi: 10.1175/BAMS-D-14-00007.1.CrossRefGoogle Scholar
  9. Heidinger, A. K., A. T. Evan, M. J. Foster, et al., 2012: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climate, 51, 1129–1144, doi: 10.1175/JAMC-D-11-02.1.CrossRefGoogle Scholar
  10. Hu, X. Q., N. Xu, F. Z. Weng, et al., 2013: Long-term monitoring and correction of FY-2 infrared channel calibration using AIRS and IASI. IEEE Trans. Geosci. Remote Sens., 51, 5008–5018, doi: 10.1109/TGRS.2013.2275871.CrossRefGoogle Scholar
  11. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–47, 1 doi: 10.1175/1520-0477(1996)077<0437: TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  12. Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335–342, doi: 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2.CrossRefGoogle Scholar
  13. Li, J., W. W. Wolf, W. P. Menzel, et al., 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39, 1248–1268, doi: 10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2.CrossRefGoogle Scholar
  14. Liang, S. L., 2003: A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Trans. Geosci. Remote Sens,. 41, 136–145, doi: 10.1109/TGRS. 2002.807751.CrossRefGoogle Scholar
  15. Liu, C., P. Yang, P. Minnis, et al., 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys., 14, 13719–13737, doi: 10.5194/acp-14-13719-2014.CrossRefGoogle Scholar
  16. Liu, H., and J. Li, 2011: An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear-sky full spatial resolution advanced IR soundings. J. Appl. Meteor. Climate, 49, 821–827.CrossRefGoogle Scholar
  17. Liu, Q. H., and S. Boukabara, 2014: Community Radiative Transfer Model (CRTM) applications in supporting the Suomi National Polar-orbiting Partnership (SNPP) mission validation and verification. Remote Sens. Environ., 140, 744–754, doi: 10.1016/j.rse.2013.10.011.CrossRefGoogle Scholar
  18. Lu, F., X. H. Zhang, and J. M. Xu, 2008: Image navigation for the FY2 geosynchronous meteorological satellite. J. Atmos. Ocean. Technol,. 25, 1149–1165, doi: 10.1175/2007JTECHA964.1.CrossRefGoogle Scholar
  19. Ma, X. L., T. J. Schmit, and W. A. Smith, 1999: A nonlinear physical retrieval algorithm—Its application to the GOES-8/9 sounder. J. Appl. Meteor., 38, 501–513, doi: 10.1175/1520-0450(1999)038<0501:ANPRAI>2.0.CO;2.CrossRefGoogle Scholar
  20. Matricardi, M., 2010: A principal component based version of the RTTOV fast radiative transfer model. Quart. J. Roy. Meteor. Soc., 136, 1823–1835, doi: 10.1002/qj.v136:652.CrossRefGoogle Scholar
  21. Menzel, W. P., R. A. Frey, H. Zhang, et al., 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climate, 47, 1175–1198, doi: 10.1175/2007JAMC1705.1.CrossRefGoogle Scholar
  22. Min, M., Y. Zhang, Z. G. Rong, et al., 2014: A method for monitoring the on-orbit performance of a satellite sensor infrared window band using oceanic drifters. Int. J. Remote Sens., 35, 382–400, doi: 10.1080/01431161.2013.871393.CrossRefGoogle Scholar
  23. Schmetz, J., P. Pili, S. Tjemkes, et al., 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977–992, doi: 10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.CrossRefGoogle Scholar
  24. Schmit, T. J., M. M. Gunshor, W. P. Menzel, et al., 2005: Introducing the next-generation advanced baseline imager on GOESR. Bull. Amer. Meteor. So,c. 86, 1079–1096, doi: 10.1175/BAMS-86-8-1079.CrossRefGoogle Scholar
  25. Schmit, T. J., J. Li, J. L. Li, et al., 2008: The GOES-R advanced baseline imager and the continuation of current sounder products. J. Appl. Meteor. Climate, 47, 2696–2711, doi: 10.1175/2008JAMC1858.1.CrossRefGoogle Scholar
  26. Stuhlmann, R., A. Rodriguez, S. Tjemkes, et al., 2005: Plans for EUMETSAT’s Third Generation Meteosat geostationary satellite programme. Adv. Space Res,. 36, 975–981, doi: 10.1016/j.asr.2005.03.091.CrossRefGoogle Scholar
  27. Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390–409, doi: 10.1109/TGRS.2002.808236.CrossRefGoogle Scholar
  28. Wan, Z. M., 2008: New refinements and validation of the MODIS land–surface temperature/emissivity products. Remote Sens. Environ., 112, 59–74, doi: 10.1016/j.rse.2006.06.026.CrossRefGoogle Scholar
  29. Wang, M. H., and M. D. King, 1997: Correction of Rayleigh scattering effects in cloud optical thickness retrievals. J. Geophys. Res., 102, 25915–25926, doi: 10.1029/97JD02225.CrossRefGoogle Scholar
  30. Yang, J., P. Zhang, N. M. Lu, et al., 2012: Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digit. Earth, 5, 251–265, doi: 10.1080/17538947.2012.658666.CrossRefGoogle Scholar
  31. Yang, J., Z. Zhang, and C. Wei, 2017: Introducing the new generation of Chinese geostationary weather satellites—Fengyun 4 (FY-4). Bull. Amer. Meteor. Soc., doi: 10.1175/BAMS-D-16-0065.1, in press.Google Scholar
  32. Yu, Y. Y., D. Tarpley, J. L. Privette, et al., 2009: Developing algorithm for operational GOES-R land surface temperature product. IEEE Trans. Geosci. Remote Sens., 47, 936–951, doi: 10.1109/TGRS.2008.2006180.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Min Min
    • 1
  • Chunqiang Wu
    • 1
  • Chuan Li
    • 1
  • Hui Liu
    • 1
  • Na Xu
    • 1
  • Xiao Wu
    • 1
  • Lin Chen
    • 1
  • Fu Wang
    • 1
  • Fenglin Sun
    • 1
  • Danyu Qin
    • 1
  • Xi Wang
    • 1
  • Bo Li
    • 1
  • Zhaojun Zheng
    • 1
  • Guangzhen Cao
    • 1
  • Lixin Dong
    • 1
  1. 1.Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations