Journal of Meteorological Research

, Volume 31, Issue 5, pp 834–851 | Cite as

Accounting for CO2 variability over East Asia with a regional joint inversion system and its preliminary evaluation

  • Xingxia Kou
  • Xiangjun Tian
  • Meigen Zhang
  • Zhen Peng
  • Xiaoling Zhang
Regular Article


A regional surface carbon dioxide (CO2) flux inversion system, the Tan-Tracker-Region, was developed by incorporating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolution of the surface CO2 fluxes and help avoid the “signal-to-noise” problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the performance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation network in different CO2 flux situations. The results indicate that more observation sites would be useful to systematically improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system.

Key words

surface CO2 flux inversion proper orthogonal decomposition (PDO) four-dimensional variational data assimilation (4DVar) joint assimilation regional transport model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadov, R., C. Gerbig, R. Kretschmer, et al., 2009: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2. Biogeosciences, 6, 807–817, doi: 10.5194/bg-6-807-2009.CrossRefGoogle Scholar
  2. Andres, R. J., T. A. Boden, F.-M. Bréon, et al., 2012: A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9, 1845–1871, doi: 10.5194/bg-9-1845-2012.CrossRefGoogle Scholar
  3. Baker, D. F., S. C. Doney, and D. S. Schimel, 2006: Variational data assimilation for atmospheric CO2. Tellus B, 58, 359–365, doi: 10.1111/j.1600-0889.2006.00218.x.CrossRefGoogle Scholar
  4. Ballav, S., P. K. Patra, M. Takigawa, et al., 2012: Simulation of CO2 concentration over East Asia using the regional transport model WRF-CO2. J. Meteor. Soc. Japan, 90, 959–976, doi: 10.2151/jmsj.2012-607.CrossRefGoogle Scholar
  5. Bousquet, P., P. Peylin, P. Ciais, et al., 2000: Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290, 1342–1346, doi: 10.1126/science.290.5495.1342.CrossRefGoogle Scholar
  6. Chevallier, F., P. I. Palmer, L. Feng, et al., 2014: Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett., 41, 1065–1070, doi: 10.1002/2013GL058772.CrossRefGoogle Scholar
  7. Conway, T. J., 2013: Atmospheric CO 2 Monthly Concentration Data, Ulaan Uul, World Data Centre for Greenhouse Gases. Japan Meteorology Agency, Tokyo. [Available online at]Google Scholar
  8. Deng, F., J. M. Chen, M. Ishizawa, et al., 2007: Global monthly CO2 flux inversion with a focus over North America. Tellus B, 59, 179–190, doi: 10.1111/j.1600-0889.2006.00235.x.CrossRefGoogle Scholar
  9. Engelen, R. J., S. Serrar, and F. Chevallier, 2009: Four-dimensional data assimilation of atmospheric CO2 using AIRS observations. J. Geophys. Res., 114, D03303, doi: 10.1029/2008JD010739.CrossRefGoogle Scholar
  10. Feng, L., P. I. Palmer, H. Bösch, et al., 2009: Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman filter. Atmos. Chem. Phys., 9, 2619–2633, doi: 10.5194/acp-9-2619-2009.CrossRefGoogle Scholar
  11. Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, doi: 10.1002/qj.49712555417.CrossRefGoogle Scholar
  12. Greybush, S. J., E. Kalnay, T. Miyoshi, et al., 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511–522, doi: 10.1175/2010MWR3328.1.CrossRefGoogle Scholar
  13. Guan, D. B., Z. Liu, Y. Geng, et al., 2012: The gigatonne gap in China’s carbon dioxide inventories. Nat. Climate. Change, 2, 672–675, doi: 10.1038/nclimate1560.CrossRefGoogle Scholar
  14. Gurney, K. R., R. M. Law, A. S. Denning, et al., 2004: Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cy., 18, GB1010, doi: 10.1029/2003GB002111.CrossRefGoogle Scholar
  15. Gurney, K. R., D. L. Mendoza, Y. Y. Zhou, et al., 2009: High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol., 43, 5535–5541, doi: 10.1021/es900806c.CrossRefGoogle Scholar
  16. Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811, doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.CrossRefGoogle Scholar
  17. Huang, Z. K., Z. Peng, H. N. Liu, et al., 2014: Development of CMAQ for East Asia CO2 data assimilation under an EnKF framework: A first result. Chinese Sci. Bull., 59, 3200–3208, doi: 10.1007/s11434-014-0348-9.CrossRefGoogle Scholar
  18. Jia, B. H., Z. H. Xie, Y. Y. Zeng, et al., 2015: Diurnal and seasonal variations of CO2 fluxes and their climate controlling factors for a subtropical forest in Ningxiang. Adv. Atmos. Sci., 32, 553–564, doi: 10.1007/s00376-014-4069-4.CrossRefGoogle Scholar
  19. Jiang, F., H. W. Wang, J. M. Chen, et al., 2013: Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences, 10, 5311–5324, doi: 10.5194/bg-10-5311-2013.CrossRefGoogle Scholar
  20. Kang, J. S., E. Kalnay, T. Miyoshi, et al., 2012: Estimation of surface carbon fluxes with an advanced data assimilation methodology. J. Geophys. Res., 117, D24101, doi: 10.1029/2012JD018259.CrossRefGoogle Scholar
  21. Kort, E. A., C. Frankenberg, C. E. Miller, et al., 2012: Space-based observations of megacity carbon dioxide. Geophys. Res. Lett., 39, L17806, doi: 10.1029/2012GL052738.CrossRefGoogle Scholar
  22. Kou, X. X., M. G. Zhang, and Z. Peng, 2013: Numerical simulation of CO2 concentrations in East Asia with RAMS-CMAQ. Atmos. Oceanic Sci. Lett., 6, 179–184, doi: 10.3878/j.issn.1674-2834.13.0022.CrossRefGoogle Scholar
  23. Kou, X. X., M. G. Zhang, Z. Peng, et al., 2015: Assessment of the biospheric contribution to surface atmospheric CO2 concentrations over East Asia with a regional chemical transport model. Adv. Atmos. Sci., 32, 287–300, doi: 10.1007/s00376-014-4059-6.CrossRefGoogle Scholar
  24. Kurokawa, J., T. Ohara, T. Morikawa, et al., 2013: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys., 13, 11019–11058, doi: 10.5194/acp-13-11019-2013.CrossRefGoogle Scholar
  25. Le Quéré, C., M. R. Raupach, J. G. Canadell, et al., 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831–836, doi: 10.1038/ngeo689.CrossRefGoogle Scholar
  26. Lee, H., and S. H. Kim, 2013: Atmospheric CO 2 Monthly Concentration Data, Anmyeon-Do, World Data Centre for Greenhouse Gases. Japan Meteorology Agency, Tokyo. [Available online at]Google Scholar
  27. Liu, J. J., I. Fung, E. Kalnay, et al., 2012: Simultaneous assimilation of AIRS Xco2 and meteorological observations in a carbon climate model with an ensemble Kalman filter. J. Geophys. Res., 117, D05309, doi: 10.1029/2011JD016642.CrossRefGoogle Scholar
  28. Liu, M., H. Wang, H. Wang, et al., 2013: Refined estimate of China’s CO2 emissions in spatiotemporal distributions. Atmos. Chem. Phys., 13, 10873–10882, doi: 10.5194/acp-13-10873-2013.CrossRefGoogle Scholar
  29. Liu, Y., and X. L. Zou, 2015: Impact of 4DVAR assimilation of AIRS total column ozone observations on the simulation of Hurricane Earl. J. Meteor. Res., 29, 257–271, doi: 10.1007/s13351-015-4058-2.CrossRefGoogle Scholar
  30. Liu, Z., R. P. Bambha, J. P. Pinto, et al., 2013: Toward verifying fossil fuel CO2 emissions with the CMAQ model: Motivation, model description and initial simulation. J. Air Waste Manag. Assoc., 64, 419–435, doi: 10.1080/10962247.2013.816642.CrossRefGoogle Scholar
  31. Maki, T., M. Ikegami, T. Fujita, et al., 2010: New technique to analyze global distributions of CO2 concentrations and fluxes from non-processed observational data. Tellus B, 62, 797–809, doi: 10.1111/j.1600-0889.2010.00488.x.CrossRefGoogle Scholar
  32. Mays, K. L., P. B. Shepson, B. H. Stirm, et al., 2009: Aircraftbased measurements of the carbon footprint of Indianapolis. Environ. Sci. Technol., 43, 7816–7823, doi: 10.1021/es901326b.CrossRefGoogle Scholar
  33. McKain, K., S. C. Wofsy, T. Nehrkorn, et al., 2012: Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. USA, 109, 8423–8428, doi: 10.1073/pnas.1116645109.CrossRefGoogle Scholar
  34. Miyazaki, K., 2009: Performance of a local ensemble transform Kalman filter for the analysis of atmospheric circulation and distribution of long-lived tracers under idealized conditions. J. Geophys. Res., 114, D19304, doi: 10.1029/2009JD011892.CrossRefGoogle Scholar
  35. Nassar, R., D. B. A. Jones, P. Suntharalingam, et al., 2010: Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species. Geosci. Model Dev., 3, 689–716, doi: 10.5194/gmd-3-689-2010.CrossRefGoogle Scholar
  36. Peng, Z., M. G. Zhang, X. X. Kou, et al., 2015: A regional carbon data assimilation system and its preliminary evaluation in East Asia. Atmos. Chem. Phys., 15, 1087–1104, doi: 10.5194/acp-15-1087-2015.CrossRefGoogle Scholar
  37. Peters, W., J. B. Miller, J. Whitaker, et al., 2005: An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, doi: 10.1029/2005JD006157.CrossRefGoogle Scholar
  38. Peters, W., A. R. Jacobson, C. Sweeney, et al., 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104, 18925–18930, doi: 10.1073/pnas.0708986104.CrossRefGoogle Scholar
  39. Peylin, P., R. M. Law, K. R. Gurney, et al., 2013: Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences, 10, 6699–6720, doi: 10.5194/bgd-10-5301-2013.CrossRefGoogle Scholar
  40. Piao, S. L., J. Y. Fang, P. Ciais, et al., 2009: The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009–1013, doi: 10.1038/nature07944.CrossRefGoogle Scholar
  41. Pillai, D., C. Gerbig, R. Ahmadov, et al., 2011: High-resolution simulations of atmospheric CO2 over complex terrain-representing the Ochsenkopf mountain tall tower. Atmos. Chem. Phys., 11, 7445–7464, doi: 10.5194/acpd-11-6875-2011.CrossRefGoogle Scholar
  42. Saeki, T., S. Maksyutov, M. Sasakawa, et al., 2013: Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements. J. Geophys. Res., 118, 1100–1122, doi: 10.1002/jgrd.50127.Google Scholar
  43. Stephens, B. B., K. R. Gurney, P. P. Tans, et al., 2007: Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316, 1732–1735, doi: 10.1126/science.1137004.CrossRefGoogle Scholar
  44. Strassmann, K. M., F. Joos, and G. Fischer, 2008: Simulating effects of land use changes on carbon fluxes: Past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B, 60, 583–603, doi: 10.1111/j.1600-0889.2008.00340.x.CrossRefGoogle Scholar
  45. Tangborn, A., L. L. Strow, B. Imbiriba, et al., 2013: Evaluation of a new middle–lower tropospheric CO2 product using data assimilation. Atmos. Chem. Phys., 13, 4487–4500, doi: 10.5194/acp-13-4487-2013.CrossRefGoogle Scholar
  46. Tian, X. J., Z. H. Xie, and A. G. Dai, 2008: An ensemble-based explicit four-dimensional variational assimilation method. J. Geophys. Res., 113, D21124, doi: 10.1029/2008JD010358.CrossRefGoogle Scholar
  47. Tian, X. J., Z. H. Xie, and Q. Sun, 2011: A POD-based ensemble four-dimensional variational assimilation method. Tellus A, 63, 805–816, doi: 10.1111/j.1600-0870.2011.00529.x.CrossRefGoogle Scholar
  48. Tian, X. J., Z. H. Xie, Y. Liu, et al., 2014: A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations. Atmos. Chem. Phys., 14, 13281–13293,doi: 10.5194/acp- 14-13281-2014.CrossRefGoogle Scholar
  49. van der Werf, G. R., J. T. Randerson, L. Giglio, et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11707–11735, doi: 10.5194/acp-10-11707-2010.CrossRefGoogle Scholar
  50. Wang, B., J. J. Liu, S. D. Wang, et al., 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715–727, doi: 10.1007/s00376-009-9122-3.CrossRefGoogle Scholar
  51. Wunch, D., P. O. Wennberg, G. C. Toon, et al., 2009: Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett., 36, L15810, doi: 10.1029/2009gl039825.CrossRefGoogle Scholar
  52. Yu, G. R., X. J. Zhu, Y. L. Fu, et al., 2013: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biol., 19, 798–810, doi: 10.1111/gcb.12079.CrossRefGoogle Scholar
  53. Zhang, B., X. J. Tian, J. H. Sun, et al., 2015: PODEn4DVar-based radar data assimilation scheme: Formulation and preliminary results from real-data experiments with advanced research WRF (ARW). Tellus A, 67, 26045, doi: 10.3402/tellusa.v67.26045.CrossRefGoogle Scholar
  54. Zhang, H. F., B. Z. Chen, I. T. van der Laan-Luijk, et al., 2014: Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006–2010. Atmos. Chem. Phys., 14, 5807–5824, doi: 10.5194/acp-14-5807-2014.CrossRefGoogle Scholar
  55. Zhang, M. G., I. Uno, S. Sugata, et al., 2002: Numerical study of boundary layer ozone transport and photochemical production in East Asia in the wintertime. Geophys. Res. Lett., 29, 40-1–40-4, doi: 10.1029/2001GL014368.Google Scholar
  56. Zhao, Y., C. P. Nielsen, and M. B. McElroy, 2012: China’s CO2 emissions estimated from the bottom up: Recent trends, spatial distributions, and quantification of uncertainties. Atmos. Environ., 59, 214–223, doi: 10.1016/j.atmosenv.2012.05.027.CrossRefGoogle Scholar
  57. Zhou, L. X., 2013: Atmospheric CO 2 Monthly Concentration Data, Mt. Waliguan, World Data Centre for Greenhouse Gases. Japan Meteorology Agency, Tokyo. [Available online at]Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xingxia Kou
    • 1
    • 2
  • Xiangjun Tian
    • 3
  • Meigen Zhang
    • 2
  • Zhen Peng
    • 4
  • Xiaoling Zhang
    • 5
  1. 1.Institute of Urban MeteorologyChina Meteorological AdministrationBeijingChina
  2. 2.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.International Center for climate and Environment Sciences, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.School of Atmospheric SciencesNanjing UniversityNanjingChina
  5. 5.School of Atmospheric SciencesChengdu University of Information TechnologyChengduChina

Personalised recommendations