Journal of Meteorological Research

, Volume 31, Issue 1, pp 250–260 | Cite as

Circulation characteristics of persistent cold spells in central–eastern North America

  • Zhenhua Li
  • Alan H. Manson
  • Yanping Li
  • Chris Meek
Article
  • 112 Downloads

Abstract

The circulation patterns of persistent cold weather spells with durations longer than 10 days in central–eastern North America (United States and Canada; 32°–52°N, 95°–65°W) are investigated by using NCEP reanalysis data from 1948 to 2014. The criteria for the persistent cold spells are: (1) three-day averaged temperature anomalies for the regional average over the central–eastern United States and Canada must be below the 10th percentile, and (2) such extreme cold spells must last at least 10 days. The circulation patterns associated with these cold spells are examined to find the common signals of these events. The circulation anomaly patterns of these cold spells are categorized based on the El Niño–Southern Oscillation, Arctic Oscillation (AO), and other climate indices. The atmospheric circulation patterns that favor the cold spells are identified through composites of geopotential height maps for the cold spells. Negative AO phases favor persistent cold spells. Phases of sea surface temperature (SST) modes that are associated with warm SSTs in the eastern extratropical Pacific also favor persistent cold events in the study region. Stratospheric polar vortex breakdown alone is not a good predictor for the regional extreme cold spells in central–eastern North America. The meridional dispersions of quasi-stationary Rossby waves in the Pacific–North America sector in terms of cut-off zonal wavenumber modulated by background flow are analyzed to provide insight into the difference in evolution of the cold spells under different mean AO phases. The waveguide for AO > 1 is in a narrow latitudinal band centered on 40°N, whereas the waveguide for AO <–1 is in a broader latitudinal band from 40° to 65°N. The circulation patterns and lower boundary conditions favorable for persistent cold spells identified by this study can be a stepping-stone for improving winter subseasonal forecasting in North America.

Key words

cold spell quasi-stationary Rossby wave ENSO Arctic Oscillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.CrossRefGoogle Scholar
  2. Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 1661–1672.CrossRefGoogle Scholar
  3. Bond, N. A., and D. E. Harrison, 2000: The Pacific decadal oscillation, air–sea interaction and central North Pacific winter atmospheric regimes. Geophys. Res. Lett., 27, 731–734.CrossRefGoogle Scholar
  4. Bond, N. A., J. E. Overland, M. Spillane, et al., 2003: Recent shifts in the state of the North Pacific. Geophys. Res. Lett., 30, 2183, doi: 10.1029/2003GL018597.CrossRefGoogle Scholar
  5. Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449–469, doi: 10.1175/JCLI 3996.1.CrossRefGoogle Scholar
  6. DeWeaver, E., and S. Nigam, 2004: On the forcing of ENSO teleconnections by anomalous heating and cooling. J. Climate, 17, 3225–3235.CrossRefGoogle Scholar
  7. Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 39, L06801, doi: 10.1029/2012GL051000.CrossRefGoogle Scholar
  8. Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592–606.CrossRefGoogle Scholar
  9. Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 1894–1902.CrossRefGoogle Scholar
  10. Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere. Hoskins, B. J., and R. P. Pearce, Eds., Academic Press, New York, 127–168.Google Scholar
  11. Higgins, R. W., A. Leetmaa, and V. E. Kousky, 2002: Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 1555–1572.CrossRefGoogle Scholar
  12. Hurrell, J. W., Y. Kushnir, G. Ottersen, et al., 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Hurrell, J. W., Y. Kushnir, G. Ottersen, et al., Eds., American Geophysical Union, Washington DC, doi: 10.1029/134GM-01.CrossRefGoogle Scholar
  13. Jung, T., F. Vitart, L. Ferranti, et al., 2011: Origin and predictability of the extreme negative NAO winter of 2009/10. Geophys. Res. Lett., 38, L07701.CrossRefGoogle Scholar
  14. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.CrossRefGoogle Scholar
  15. Lindzen, R. S., 1986: Stationary planetary waves, blocking, and interannual variability. Adv. Geophys., 29, 251–273.CrossRefGoogle Scholar
  16. Mitchell, D. M., L. J. Gray, J. Anstey, et al., 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 2668–2682, doi: 10.1175/JCLI-D-12-00030.1.CrossRefGoogle Scholar
  17. Peng, S. L., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 1393–1408.CrossRefGoogle Scholar
  18. Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and midlatitude weather. Geophys. Res. Lett., 40, 959–964.CrossRefGoogle Scholar
  19. Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 1363–1392.CrossRefGoogle Scholar
  20. Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.CrossRefGoogle Scholar
  21. Smith, M. L., and A. J. McDonald, 2014: A quantitative measure of polar vortex strength using the function M. J. Geophys. Res., 119, 5966–5985.Google Scholar
  22. Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15, 2340–2358.CrossRefGoogle Scholar
  23. Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627.CrossRefGoogle Scholar
  24. Thompson, D. W. J., S. Lee, and M. P. Baldwin, 2003: Atmospheric processes governing the Northern Hemisphere annular mode/North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Hurrell, J. W., Y. Kushnir, G. Ottersen, et al., Eds., American Geophysical Union, Washington D. C, 81–112.CrossRefGoogle Scholar
  25. Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proceedings of the 17th Climate Diagnostics Workshop, University of Oklahoma, Oklahoma, 52–57.Google Scholar
  26. Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank. Weather, 53, 315–324.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhenhua Li
    • 1
  • Alan H. Manson
    • 1
  • Yanping Li
    • 2
  • Chris Meek
    • 1
  1. 1.Institute of Space and Atmospheric Studies, Department of Physics and Engineering PhysicsUniversity of SaskatchewanSaskatoonCanada
  2. 2.Global Institute for Water SecurityUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations