Journal of Meteorological Research

, Volume 31, Issue 4, pp 633–653 | Cite as

An overview of mineral dust modeling over East Asia

  • Siyu Chen
  • Jianping Huang
  • Yun Qian
  • Chun Zhao
  • Litai Kang
  • Ben Yang
  • Yong Wang
  • Yuzhi Liu
  • Tiangang Yuan
  • Tianhe Wang
  • Xiaojun Ma
  • Guolong Zhang


East Asian dust (EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research, including dust emissions, long-range transport, radiative forcing (RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.

Key words

East Asia dust aerosol dust modeling dust emissions long-range dust transport dust radiative forcing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We appreciate the comments by Professor Hua Zhang and the two anonymous reviewers, which have helped improve the paper.


  1. Ai, N., and K. R. Polenske, 2008: Socioeconomic impact analysis of yellow-dust storms: An approach and case study for Beijing. Economic Systems Research, 20, 187–203, doi: 10.1080/09535310802075364.CrossRefGoogle Scholar
  2. Aoki, T., H. Motoyoshi, Y. Kodama, et al., 2006: Atmospheric aerosol deposition on snow surfaces and its effect on albedo. SOLA, 2, 13–16, doi: 10.2151/sola.2006-004.CrossRefGoogle Scholar
  3. Bi, J. R., J. P. Huang, Q. Fu, et al., 2011: Toward characterization of the aerosol optical properties over Loess Plateau of northwestern China. J. Quant. Spectros. Radiative Transfer, 112, 346–360, doi: 10.1016/j.jqsrt.2010.09.006.CrossRefGoogle Scholar
  4. Bian, H., X. X. Tie, J. J. Cao, et al., 2011: Analysis of a severe dust storm event over China: Application of the WRF-dust model. Aerosol and Air Quality Research, 11, 419–428, doi: 10.4209/aaqr.2011.04.0053.Google Scholar
  5. Chao, W.-L., and M. Alexander, 1984: Mineral soils as carriers for Rhizobium inoculants. Appl. Environ. Microbio., 47, 94–97.Google Scholar
  6. Chen, S. Y., J. P. Huang, J. J. Liu, et al., 2010: Effects of dust aerosols on cloud in semi-arid regions as inferred from OMI and MODIS retrievals. Adv. Earth Sci., 25, 188–198. (in Chinese)Google Scholar
  7. Chen, S. Y., J. P. Huang, C. Zhao, et al., 2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res, 118, 797–812, doi: 10.1002/jgrd.50122.Google Scholar
  8. Chen, S. Y., C. Zhao, Y. Qian, et al., 2014a: Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Research, 15, 15–30, doi: 10.1016/j. aeolia.2014.02.001.CrossRefGoogle Scholar
  9. Chen, S. Y., J. P. Huang, Y. Qian, et al., 2014b: Effects of aerosols on autumn precipitation over mid–eastern China. J. Trop. Meteor., 20, 242–250.Google Scholar
  10. Chen, S. Y., J. P. Huang, L. T. Kang, et al., 2016: Emission, transport and radiative effects of mineral dust from Taklimakan and Gobi deserts: Comparison of measurements and model results. Atmos. Chem. Phys., doi: 10.5194/acp-2016-531.Google Scholar
  11. Chen, S. Y., J. P. Huang, J. Li, et al., 2017: Comparisons of dust emission, transport, and deposition between the Taklimakan desert and Gobi desert from 2007 to 2011. Sci. China Earth Sci, doi: 10.1007/s11430-016-9051-0.Google Scholar
  12. Conant, W. C., J. H. Seinfeld, J. Wang, et al., 2003: A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations. J. Geophys. Res., 108, doi: 10.1029/2002 JD003260.Google Scholar
  13. Cong, Z. Y., S. C. Kang, S. P. Gao, et al., 2013: Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environ. Sci. Technol., 47, 2579–2586, doi: 10.1021/es3048202.CrossRefGoogle Scholar
  14. Eguchi, K., I. Uno, K. Yumimoto, et al., 2009: Trans-Pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys., 9, 3137–3145, doi: 10.5194/acp-9-3137-2009.CrossRefGoogle Scholar
  15. Fairlie, T. D., D. J. Jacob, J. E. Dibb, et al., 2010: Impact of mineral dust on nitrate, sulfate, and ozone in trans-Pacific Asian pollution plumes. Atmos. Chem. Phys., 10, 3999–4012, doi: 10.5194/acp-10-3999-2010.CrossRefGoogle Scholar
  16. Flanner, M. G., C. S. Zender, J. T. Randerson, et al., 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi: 10.1029/2006 JD008003.CrossRefGoogle Scholar
  17. Flanner, M. G., X. Liu, C. Zhou, et al., 2012: Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos. Chem. Phys., 12, 4699–4721, doi: 10.5194/acp-12-4699-2012.CrossRefGoogle Scholar
  18. Fu, Q., T. J. Thorsen, J. Su, et al., 2009: Test of Mie-based singlescattering properties of non-spherical dust aerosols in radiative flux calculations. J. Quant. Spectros. Radiative Transfer, 110, 1640–1653, doi: 10.1016/j.jqsrt.2009.03.010.CrossRefGoogle Scholar
  19. Fu, X., S. X. Wang, Z. Cheng, et al., 2014: Source, transport, and impacts of a heavy dust event in the Yangtze River Delta, China, in 2011. Atmos. Chem. Phys., 14, 1239–1254, doi: 10.5194/acp-14-1239-2014.CrossRefGoogle Scholar
  20. Ge, J. M., J. P. Huang, J. Su, et al., 2011: Shortwave radiative closure experiment and direct forcing of dust aerosol over northwestern China. Geophys. Res. Lett., 38, L24803, doi: 10.1029/2011GL049571.CrossRefGoogle Scholar
  21. Ginoux, P., M. Chin., I. Tegen, et al., 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20255–20274, doi: 10.1029/2000JD000 053.CrossRefGoogle Scholar
  22. Gong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2003a: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia. 2: Model simulation and validation. J. Geophys. Res., 108, doi: 10.1029/2002JD002633.Google Scholar
  23. Gong, S. L., L. A. Barrie, J. P. Blanchet, et al., 2003b: Canadian aerosol module: A size segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J. Geophys. Res., 108, AAC 3-1–AAC 3-16, doi: 10.1029/2001JD002002.Google Scholar
  24. Gong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. J. Climate, 19, 104–122, doi: 10.1175/JCLI3606.1.CrossRefGoogle Scholar
  25. Grell, G. A., S. E. Peckham, R. Schmitz, et al., 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 6957–6975, doi: 10.1016/j.atmosenv.2005.04.027.CrossRefGoogle Scholar
  26. Grell, G., and A. Baklanov, 2011: Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmos. Environ., 45, 6845–6851, doi: 10.1016/j.atmosenv. 2011.01.017.CrossRefGoogle Scholar
  27. Gu, Y., Y. Xue, F. D. Sales, et al., 2016: A GCM investigation of dust aerosol impact on the regional climate of North Africa and South/East Asia. Climate Dyn., 46, 2353–2370, doi: 10.1007/s00382-015-2706-y.CrossRefGoogle Scholar
  28. Guo, J., and Y. Yin, 2015: Mineral dust impacts on regional precipitation and summer circulation in East Asia using a regional coupled climate system model. J. Geophys. Res., 120, 10378–10398, doi: 10.1002/2015JD023096.Google Scholar
  29. Han, Z. W., 2010: Direct radiative effect of aerosols over East Asia with a regional coupled climate/chemistry model. Meteor. Z., 19, 287–298, doi: 10.1127/0941-2948/2010/0461.CrossRefGoogle Scholar
  30. Han, Z. W., H. Ueda, K. Matsuda, et al., 2004: Model study on particle size segregation and deposition during Asian dust events in March 2002. J. Geophys. Res., 109, doi: 10.1029/2004JD004920.Google Scholar
  31. Han, Z. W., J. W. Li, X. G. Xia, et al., 2012: Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate–chemistry–aerosol mode. Atmos. Environ., 54, 688–699, doi: 10.1016/j.atmosenv. 2012.01.041.CrossRefGoogle Scholar
  32. Han, Z. W., J. W. Li, W. D. Guo, et al., 2013: A study of dust radiative feedback on dust cycle and meteorology over East Asia by a coupled regional climate–chemistry–aerosol model. Atmos. Environ., 68, 54–63, doi: 10.1016/j.atmosenv.2012.11. 032.CrossRefGoogle Scholar
  33. Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864, doi: 10.1029/96JD03436.CrossRefGoogle Scholar
  34. Hsu, S. C., F. Tsai, F.-J. Lin, et al., 2013: A super Asian dust storm over the East and South China Seas: Disproportionate dust deposition. J. Geophys. Res., 118, 7169–7181, doi: 10.1002/jgrd.50405.CrossRefGoogle Scholar
  35. Huang, J. P., B. Lin, P. Minnis, et al., 2006a: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, doi: 10.1029/2006GL026561.Google Scholar
  36. Huang, J. P., Y. J. Wang, T. H. Wang, et al., 2006b: Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia. Progress in Natural Science, 16, 1084–1089, doi: 10.1080/10020070612330114.CrossRefGoogle Scholar
  37. Huang, J. P., P. Minnis, B. Lin, et al., 2006c: Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.Google Scholar
  38. Huang, J. P., P. Minnis, Y. H. Yi, et al., 2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, doi: 10.1029/2007GL029938.Google Scholar
  39. Huang, J. P., Z. W. Huang, J. R. Bi, et al., 2008a: Micro-pulse Lidar measurements of aerosol vertical structure over the Loess Plateau. Atmos. Ocean. Sci. Lett., 1, 8–11.Google Scholar
  40. Huang, J. P., P. Minnis, B. Chen, et al., 2008b: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.CrossRefGoogle Scholar
  41. Huang, J., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu–Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021, doi: 10.5194/acp-9-4011-2009.CrossRefGoogle Scholar
  42. Huang, J., P. Minnis, H. Yan, et al., 2010: Dust aerosol effect on semi-arid climate over Northwest China detected from ATrain satellite measurements. Atmos. Chem. Phys,. 10, 6863–6872, doi: 10.5194/acp-10-6863-2010.CrossRefGoogle Scholar
  43. Huang, J. P., Q. Fu, W. Zhang, et al., 2011: Dust and black carbon in seasonal snow across northern China. Bull. Amer. Meteor. Soc., 92, 175–181, doi: 10.1175/2010BAMS3064.1.CrossRefGoogle Scholar
  44. Huang, J., X. Guan, and F. Ji, 2012: Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys., 12, 5391–5398, doi: 10.5194/acpd-12-4627-2012.CrossRefGoogle Scholar
  45. Huang, X. X., T. J. Wang, F. Jiang, et al., 2013: Studies on a severe dust storm in East Asia and its impact on the air quality of Nanjing, China. Aerosol and Air Quality Research, 13, 179–193, doi: 10.4209/aaqr.2012.05.0108.Google Scholar
  46. Huang, J. P., T. H. Wang, W. C. Wang, et al., 2014: Climate effects of dust aerosols over East Asian arid and semi-arid regions. J. Geophys. Res., 119, 11398–11416, doi: 10.1002/2014JD021796.Google Scholar
  47. Huang, J. P., J. J. Liu, B. Chen, et al., 2015: Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys., 15, 11653–11655, doi: 10.5194/acp-15-11653- 2015.CrossRefGoogle Scholar
  48. Huang, J. P., H. P. Yu, X. D. Guan, et al., 2016: Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166–171, doi: 10.1038/NCLIMATE2837.Google Scholar
  49. Huneeus, N., M. Schulz, Y. Balkanski, et al., 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 7781–7816, doi: 10.5194/acp-11-7781-2011.CrossRefGoogle Scholar
  50. In, H.-J., and S.-U. Park, 2003: The soil particle size dependent emission parameterization for an Asian dust (Yellow Sand) observed in Korea in April 2002. Atmos. Environ,. 37, 4625–4636, doi: 10.1016/j.atmosenv.2003.07.009.CrossRefGoogle Scholar
  51. Jia, X., W. C. Wang, Y. H. Chen, et al., 2010: Influence of dust aerosols on cloud radiative forcing over northern China. China Environ. Sci, 30, 1009–1014. (in Chinese)Google Scholar
  52. Jia, R., Y. Z. Liu, B. Chen, et al., 2015: Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123, 210–219, doi: 10.1016/j.atmosenv.2015.10.038.CrossRefGoogle Scholar
  53. Joussaume, S, 1990: Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model. J. Geophys. Res., 95, 1909–1941, doi: 10.1029/JD095iD02p01909.CrossRefGoogle Scholar
  54. Kameda, E., A. Fukushima, et al., 2016: Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds. Scientific Report, 6, 24427, doi: 10.1038/srep 24427.CrossRefGoogle Scholar
  55. Kang, J.-H., T.-C. Liu, J. Keller, et al., 2013: Asian dust storm events are associated with an acute increase in stroke hospitalisation. Journal of Epidemiology and Community Health, 67, 125–131, doi: 10.1136/jech-2011-200794.CrossRefGoogle Scholar
  56. Kang, L., J. P. Huang, S. Y. Chen, et al., 2016: Long-term trends of dust events over Tibetan Plateau during 1961–2010. Atmos. Environ., 125, 188–198, doi: 10.1016/j.atmosenv.2015.10.085.CrossRefGoogle Scholar
  57. Kim, J., S.-C. Yoon, S.-W. Kim, et al., 2006: Chemical apportionment of shortwave direct aerosol radiative forcing at the Gosan super-site, Korea during ACE-Asia. Atmos. Environ., 40, 6718–6729, doi: 10.1016/j.atmosenv.2006.06.007.CrossRefGoogle Scholar
  58. Kim, N. K., Y. P.. Kim, and C.-H. Kang, 2011: Long-term trend of aerosol composition and direct radiative forcing due to aerosols over Gosan: TSP, PM10, and PM2.5 data between 1992 and 2008. Atmos. Environ., 45, 6107–6115, doi: 10.1016/j.atmosenv. 2011.08.051.CrossRefGoogle Scholar
  59. Klose, M., and Y. P. Shao, 2012: Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys., 12, 7309–7320, doi: 10.5194/acp-12-7309-2012.CrossRefGoogle Scholar
  60. Klose, M., and Y. P. Shao, 2013: Large-eddy simulation of turbulent dust emission. Aeolian Research, 8, 49–58, doi: 10.1016/j.aerolia.2012.10.010.CrossRefGoogle Scholar
  61. Klose, M., Y. P. Shao, X. L. Li, et al., 2014: Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., 119, 10441–10457, doi: 10.1002/2014JD021688.Google Scholar
  62. Kok, J. F., 2011: Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos. Chem. Phys., 11, 10149–10156, doi: 10.5194/acp-11-10149-2011.Google Scholar
  63. Kuchiki, K., T. Aoki, M. Niwano, et al., 2015: Elemental carbon, organic carbon, and dust concentrations in snow measured with thermal optical and gravimetric methods: Variations during the 2007–2013 winters at Sapporo, Japan. J. Geophys. Res., 120, 868–882, doi: 10.1002/2014JA020661.CrossRefGoogle Scholar
  64. Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855–864, doi: 10.1007/s00382-006-0114-z.CrossRefGoogle Scholar
  65. Lau, K.-M., S. C. Tsay, C. Hsu, et al., 2008: The joint aerosol–monsoon experiment: A new challenge for monsoon climate research. Bull. Amer. Meteor. Soc., 89, 369–389, doi: 10.1175/BAMS-89-3-369.CrossRefGoogle Scholar
  66. Lau, K. M., M. K. Kim, K.-M. Kim, et al., 2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5, doi: 10.1088/1748-9326/5/2/025204.Google Scholar
  67. Li, J. W., Z.W. Han, and R. J. Zhang, 2011: Model study of atmospheric particulates during dust storm period in March 2010 over East Asia. Atmos. Environ., 45, 3954–3964, doi: 10.1016/j.atmosenv.2011.04.068.CrossRefGoogle Scholar
  68. Li, J., Z. Wang, G. Zhuang, et al., 2012: Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-dust in March 2010. Atmos. Chem. Phys., 12, 7591–7607, doi: 10.5194/acp-12-7591-2012.CrossRefGoogle Scholar
  69. Liao, H., and J. H. Seinfeld, 1998: Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res., 103, 31637–31645, doi: 10.1029/1998JD200036.CrossRefGoogle Scholar
  70. Liao, H., Y. Zhang, W.-T. Chen, et al., 2009: Effect of chemistry–aerosol–climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols. J. Geophys. Res., 114, D10306, doi: 10.1029/2008JD010984.CrossRefGoogle Scholar
  71. Liu, M., D. L. Westphal, S. G. Wang, et al., 2003: A high-resolution numerical study of the Asian dust storms of April 2001. J. Geophys. Res., 108, 8653, doi: 10.1029/2002JD003178.CrossRefGoogle Scholar
  72. Liu, Z. Y., D. Liu, J. P. Huang, et al., 2008: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys., 8, 5045–5060, doi: 10.5194/acp-8-5045-2008.CrossRefGoogle Scholar
  73. Liu, Y., D. X. Yang, W. Z. Chen, et al., 2010: Measurements of Asian dust optical properties over the Yellow Sea of China by shipboard and ground-based photometers, along with satellite remote sensing: A case study of the passage of a frontal system during April 2006. J. Geophys. Res., 115, doi: 10.1029/2009JD012684.Google Scholar
  74. Liu, Y., J. Huang, G. Shi, et al., 2011: Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos. Chem. Phys., 11, 11455–11463, doi: 10.5194/acp-11-11455-2011.CrossRefGoogle Scholar
  75. Liu, Y. Z., G. Y. Shi, and Y. K. Xie, 2013: Impact of dust aerosol on glacial–interglacial climate. Adv. Atmos. Sci., 30, 1725–1731, doi: 10.1007/s00376-013-2289-7.CrossRefGoogle Scholar
  76. Liu, Y. Z., R. Jia, T. Dai, et al., 2014: A review of aerosol optical properties and radiative effects. J. Meteor. Res., 28, 1003–1028, doi: 10.1007/s13351-014-4045-z.CrossRefGoogle Scholar
  77. Liu, Y., Y. Sato, R. Jia, et al., 2015: Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmos. Chem. Phys., 15, 12581–12594, doi: 10.5194/acp-15-12581-2015.CrossRefGoogle Scholar
  78. Lu, H., and Y. P. Shao, 1999: A new model for dust emission by saltation bombardment. J. Geophys. Res., 104, 16827–16842, doi: 10.1029/1999JD900169.CrossRefGoogle Scholar
  79. Ma, J. H., H. Zhang, Y. F. Zheng, et al., 2007: The optical depth global distribution of dust aerosol and its possible reason analysis. Climatic Environ. Res., 12, 156–164. (in Chinese)Google Scholar
  80. Mahowald, N., K. Kohfeld, M. Hansson, et al., 1999: Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res., 104, 15895–15916, doi: 10.1029/1999JD900084.CrossRefGoogle Scholar
  81. Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16415–16430, doi: 10.1029/95JD00690.CrossRefGoogle Scholar
  82. Marticorena, B., G. Bergametti, B. Aumont, et al., 1997: Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res., 102, 4387–4404, doi: 10.1029/96JD 02964.CrossRefGoogle Scholar
  83. Mikami, M., G. Y. Shi, I. Uno, et al., 2006: Aeolian dust experiment on climate impact: An overview of Japan–China joint project ADEC. Global and Planetary Change, 52, 142–172, doi: 10.1016/j.gloplacha.2006.03.001.CrossRefGoogle Scholar
  84. Ming, J., H. Cachier, C. Xiao, et al., 2008: Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys., 8, 1343–1352, doi: 10.5194/acp-8-1343-2008.CrossRefGoogle Scholar
  85. Painter, T. H., A. P. Barrett, C. C. Landry, et al., 2007: Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett., 34, L12502, doi: 10.1029/2007GL030284.CrossRefGoogle Scholar
  86. Park, S.-U., and J. I. Jeong, 2008: Direct radiative forcing due to aerosols in Asia during March 2002. Sci. Total Environ., 407, 394–404, doi: 10.1016/j.scitotenv.2008.07.041.CrossRefGoogle Scholar
  87. Perlwitz, J., I. Tegen, and R. L. Miller, 2001: Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J. Geophys. Res., 106, 18167–18192, doi: 10.1029/2000JD900668.CrossRefGoogle Scholar
  88. Qian, Y., C. B. Fu, and S. Y. Wang, 1999: Mineral dust and climate change. Adv. Earth Sci., 14, 391–394. (in Chinese)Google Scholar
  89. Qian, Y., W. I. Gustafson Jr, L. R. Leung, et al., 2009: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res., 114, D03108, doi: 10.1029/2008JD 011039.CrossRefGoogle Scholar
  90. Qian, Y., T. J. Yasunari, S. Doherty, et al., 2015: Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci., 32, 64–91, doi: 10.1007/s00376-014-0010-0.CrossRefGoogle Scholar
  91. Qu, B., J. Ming, S.-C. Kang, et al., 2014: The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmos. Chem. Phys., 14, 11117–11128, doi: 10.5194/acpd-14-13109-2014.CrossRefGoogle Scholar
  92. Shao, Y. P., 2001: A model for mineral dust emission. J. Geophys. Res., 106, 20239–20254, doi: 10.1029/2001JD900171.CrossRefGoogle Scholar
  93. Shao, Y. P., 2004: Simplification of a dust emission scheme and comparison with data. J. Geophys. Res., 109, D10202, doi: 10.1029/2003JD004372.CrossRefGoogle Scholar
  94. Shao, Y. P., 2008: Physics and Modeling of Wind Erosion. 2nd ed. Springer, Netherlands, 452 pp.Google Scholar
  95. Shao, Y. P., M. Raupach, and J. F. Leys, 1996: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Australian Journal of Soil Research, 34, 309–342, doi: 10.1071/SR9960309.CrossRefGoogle Scholar
  96. Shao, Y. P., Y. Yan, J. J. Wang, et al., 2003: Northeast Asian dust storms: Real-time numerical prediction and validation. J. Geophys. Res., 108, 4691, doi: 10.1029/2003JD003667.CrossRefGoogle Scholar
  97. Shao, Y., and C. H. Dong, 2006: A review on East Asian dust storm climate, modeling and monitoring. Global and Planetary Change, 52, 1–22, doi: 10.1016/j.gloplacha.2006.02.011.CrossRefGoogle Scholar
  98. Shao, Y. P., K.-H. Wyrwoll, A. Chappell, et al., 2011: Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2, 181–204, doi: 10.1016/j.aeolia.2011.02.001.CrossRefGoogle Scholar
  99. Shi, G. Y., 1984: Effect of atmospheric overlapping bands and their treatment on the calculation of thermal radiation. Adv. Atmos. Sci., 1, 246–255, doi: 10.1007/BF02678137.CrossRefGoogle Scholar
  100. Shi, J.-H., H.-W. Gao, J. Zhang, et al., 2012: Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China. J. Geophys. Res., 117, D17304, doi: 10.1029/2012jd017983.Google Scholar
  101. Sokolik, I., and G. Golitsyn, 1993: Investigation of optical and radiative properties of atmospheric dust aerosols. Atmos. Environ. Part A. General Topics, 27, 2509–2517, doi: 10.1016/0960-1686(93)90023-R.CrossRefGoogle Scholar
  102. Sokolik, I., and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681–683, doi: 10.1038/381681a0.CrossRefGoogle Scholar
  103. Su, J., J. P. Huang, Q. Fu, et al., 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu–Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 2763–2771, doi: 10.5194/acp-8-2763-2008.CrossRefGoogle Scholar
  104. Sun, J. M., M. Y. Zhang, and T. Liu, 2001: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res., 106, 10325–10333, doi: 10.1029/2000JD900665.CrossRefGoogle Scholar
  105. Sun, H., Z. T. Pan, and X. D. Liu, 2012: Numerical simulation of spatial–temporal distribution of dust aerosol and its direct radiative effects on East Asian climate. J. Geophys. Res., 117, D13206, doi: 10.1029/2011JD017219.CrossRefGoogle Scholar
  106. Takemura, T., T. Nakajima, A. Higurashi, et al., 2003: Aerosol distributions and radiative forcing over the Asian Pacific region simulated by spectral radiation–transport model for aerosol species (SPRINTARS). J. Geophys. Res., 108, 8659, doi: 10.1029/2002JD003210.CrossRefGoogle Scholar
  107. Tanaka, T. Y., and M. Chiba, 2005: Global simulation of dust aerosol with a chemical transport model, MASINGAR. J. Meteor. Soc. Japan, 83A, 255–278, doi: 10.2151/jmsj.83A.255.CrossRefGoogle Scholar
  108. Tegen, I., and I. Fung, 1994: Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res., 99, 22897–22914, doi: 10.1029/94JD01928.CrossRefGoogle Scholar
  109. Tegen, I., A. Lacis, and I. Fung, 1996: The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422, doi: 10.1038/380419a0.CrossRefGoogle Scholar
  110. Todd, M. C., D. B. Karam, C. Cavazos, et al., 2008: Quantifying uncertainty in estimates of mineral dust flux: An intercomparison of model performance over the Bodélé Depression, northern Chad. J. Geophys. Res., 113, D24107, doi: 10.1029/2008JD010476.CrossRefGoogle Scholar
  111. Toon, O. B., C. McKay, T. P. Ackerman, et al., 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16287–16301, doi: 10.1029/JD094iD13p16287.CrossRefGoogle Scholar
  112. Uno, I., G. R. Carmichael, D. G. Streets, et al., 2003: Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. J. Geophys. Res., 108, 8668, doi: 10.1029/2002JD002845.CrossRefGoogle Scholar
  113. Uno, I., Z. Wang, M. Chiba, et al., 2006: Dust model intercomparison (DMIP) study over Asia: Overview. J. Geophys. Res., 111, D12213, doi: 10.1029/2005JD006575.CrossRefGoogle Scholar
  114. Uno, I., K. Yumimoto, A. Shimizu, et al., 2008: 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model. Geophys. Res. Lett., 35, L06803, doi: 10.1029/2007GL032329.CrossRefGoogle Scholar
  115. Uno, I., K. Eguchi, K. Yumimoto, et al., 2009: Asian dust transported one full circuit around the globe. Nature Geoscience, 2, 557–560, doi: 10.1038/NGEO583.CrossRefGoogle Scholar
  116. Uno, I., K. Eguchi, K. Yumimoto, et al., 2011: Large Asian dust layers continuously reached North America in April 2010. Atmos. Chem. Phys., 11, 7333–7341, doi: 10.5194/acp-11-7333-2011.CrossRefGoogle Scholar
  117. Wang, T. H., and Q. L. Min, 2008: Retrieving optical depths of optically thin and mixed-phase clouds from MFRSR measurements. J. Geophys. Res., 113, D19203, doi: 10.1029/2008JD 009958.CrossRefGoogle Scholar
  118. Wang, T. H., and J. P. Huang, 2009: A method for estimating optical properties of dusty cloud. Chinese Optics Letters, 7, 368–372, doi: 10.3788/COL20090705.0368.CrossRefGoogle Scholar
  119. Wang, Z. F., H. Ueda, and M. Y. Huang, 2000: A deflation module for use in modeling long-range transport of yellow sand over East Asia. J. Geophys. Res., 105, 26947–26959, doi: 10.1029/2000JD900370.CrossRefGoogle Scholar
  120. Wang, H., G. Y. Shi, A. Teruo, et al., 2004: Radiative forcing due to dust aerosol over East Asia–North Pacific region during spring 2001. Chinese Sci. Bull., 49, 2212–2219, doi: 10.1007/BF03185790.CrossRefGoogle Scholar
  121. Wang, X. H., T. J. Wang, J. P. Tang, et al., 2005: Thermal diffusion characteristics of atmosphere-particle two phase flow in dust storm. Heat Mass Transfer, 41, 306–314, doi: 10.1007/s00231-004-0533-5.CrossRefGoogle Scholar
  122. Wang, X., J. P. Huang, M. X. Ji, et al., 2008: Variability of East Asia dust events and their long-term trend. Atmos. Environ., 42, 3156–3165, doi: 10.1016/j.atmosenv.2007.07.046.CrossRefGoogle Scholar
  123. Wang, H., S. L. Gong, H. L. Zhang, et al., 2010: A new-generation sand and dust storm forecasting system GRAPES_CUA CE/Dust: Model development, verification and numerical simulation. Chinese Sci. Bull., 55, 635–649, doi: 10.1007/s11434-009-0481-z.CrossRefGoogle Scholar
  124. Wang, W. C., J. P. Huang, P. Minnis, et al., 2010: Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific Dust Experiment. J. Geophys. Res,. 115, D00H35, doi: 10.1029/2010JD014109.Google Scholar
  125. Wang, X., J. P. Huang, R. D. Zhang, et al., 2010: Surface measurements of aerosol properties over Northwest China during ARM China 2008 deployment. J. Geophys. Res,. 115, D00K27, doi: 10.1029/2009JD013467.Google Scholar
  126. Wang, Z. L., H. Zhang, X. S. Shen, et al., 2010: Modeling study of aerosol indirect effects on global climate with an AGCM. Adv. Atmos. Sci., 27, 1064–1077, doi: 10.1007/s00376-010- 9120-5.CrossRefGoogle Scholar
  127. Wang, J., X. G. Xu, D. K., Henze, et al., 2012: Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model. Geophys. Res. Lett, 39, doi: 10.1029/2012GL051136.Google Scholar
  128. Wang, S. H., N. C. Hsu, S. C. Tsay, et al., 2012: Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea. Geophys. Res. Lett,. 39, L05811, doi: 10.1029/2011GL050415.Google Scholar
  129. Wang, X., S. J. Doherty, and J. P. Huang, 2013: Black carbon and other light-absorbing impurities in snow across northern China. J. Geophys. Res,. 118, 1471–1492, doi: 10.1029/2012JD018291.CrossRefGoogle Scholar
  130. Wang, Z. L., H. Zhang, X. W. Jing, et al., 2013: Effect of nonspherical dust aerosol on its direct radiative forcing. Atmos. Res., 120–121, 112–126, doi: 10.1016/j.atmosres.2012.08.006.CrossRefGoogle Scholar
  131. Wang, Y., X. Liu, C. Hoose, et al., 2014: Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmos. Chem. Phys., 14, 10411–10430, doi: 10.5194/acp-14-10411-2014.CrossRefGoogle Scholar
  132. Wang, H., G. Y. Shi, B. Wang, et al., 2017: The impacts of dust aerosol from deserts of China on the radiative heating rate over desert sources and the North Pacific region. Chinese J. Atmos. Sci, 31, 515–526. (in Chinese)Google Scholar
  133. Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci,. 37, 2734–2745, doi: 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.CrossRefGoogle Scholar
  134. Wei, X. D., and H. Zhang, 2011: Analysis of optical properties of nonspherical dust aerosols. Acta Optica Sinica, 31, 501002, doi: 10.3788/AOS201131.0501002. (in Chinese)CrossRefGoogle Scholar
  135. Westphal, D. L., O. B. Toon, and T. N. Carlson, 1988: A case study of mobilization and transport of Saharan dust. J. Atmos. Sci., 45, 2145–2175, doi: 10.1175/1520-0469(1988)045 <2145:ACSOMA>2.0.CO;2.CrossRefGoogle Scholar
  136. Woodward, S., 2001: Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res., 106, 18155–18166, doi: 10.1029/2000JD900795.CrossRefGoogle Scholar
  137. Wu, J., W. M. Jiang, W. G. Wang, et al., 2004: Simulation of distribution and radiative effects of dust aerosol in spring over China area. J. Univ. Sci. Tech., 34, 116–125. (in Chinese)Google Scholar
  138. Wu, J., C. B. Fu, Z. W. Han, et al., 2010: Simulation of the direct effects of dust aerosol on climate in East Asia. Particuology, 8, 301–307, doi: 10.1016/j.partic.2010.01.006.CrossRefGoogle Scholar
  139. Wu, L. T., H. Su, and J. H. Jiang, 2013: Regional simulation of aerosol impacts on precipitation during the East Asian summer monsoon. J. Geophys. Res., 118, 6454–6467, doi: 10.1002/jgrd.50527.Google Scholar
  140. Xia, X. G., P. C. Wang, Y. S. Wang, et al., 2008: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophys. Res. Lett., 35, doi: 10.1029/2008GL034981.Google Scholar
  141. Xu, B. Q., J. J. Cao, J. Hansen, et al., 2009: Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. USA, 106, 22114–22118, doi: 10.1073/pnas.0910444106.CrossRefGoogle Scholar
  142. Xu, B. Q., J. J. Cao, D. R. Joswiak, et al., 2012: Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers. Environ. Res. Lett., 7, 014022, doi: 10.1088/1748-9326/7/1/014022.CrossRefGoogle Scholar
  143. Yan, H., Y. Qian, G. Lin, et al., 2014: Parametric sensitivity and calibration for the Kain–Fritsch convective parameterization scheme in the WRF model. Climate Res., 59, 135–147, doi: 10.3354/Cr01213.CrossRefGoogle Scholar
  144. Yang, B., Y. Qian, G. Lin, et al., 2012: Some issues in uncertainty quantification and parameter tuning: A case study of convective parameterization scheme in the WRF regional climate model. Atmos. Chem. Phys., 12, 2409–2427, doi: 10.5194/acp-12-2409-2012.CrossRefGoogle Scholar
  145. Yang, B., Y. Qian, G. Lin, et al., 2013: Uncertainty quantification and parameter tuning in the CAM5 Zhang–McFarlane convection scheme and impact of improved convection on the global circulation and climate. J. Geophys. Res., 118, 395–415, doi: 10.1029/2012jd018213.Google Scholar
  146. Yang, B., Y. C. Zhang, Y. Qian, et al., 2015a: Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation. Climate Dyn., 44, 1661–1684, doi: 10.1007/s00382- 014-2118-4.CrossRefGoogle Scholar
  147. Yang, B., Y. C. Zhang, Y. Qian, et al., 2015b: Parametric sensitivity analysis for the Asian summer monsoon precipitation simulation in the Beijing Climate Center AGCM, version 2.1. J. Climate, 28, 5622–5644, doi: 10.1175/JCLI-D-14-00655.1.CrossRefGoogle Scholar
  148. Yumimoto, K., I. Uno, N. Sugimoto, et al., 2008: Adjoint inversion modeling of Asian dust emission using lidar observations. Atmos. Chem. Phys., 8, 2869–2884, doi: 10.5194/acp-8-2869-2008.CrossRefGoogle Scholar
  149. Yumimoto, K., K. Eguchi, I. Uno, et al., 2009: An elevated largescale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmos. Chem. Phys., 9, 8545–8558, doi: 10.5194/acp-9-8545-2009.CrossRefGoogle Scholar
  150. Yumimoto, K., K. Eguchi, I. Uno, et al., 2010: Summertime transPacific transport of Asian dust. Geophys. Res. Lett,. 37, L18815, doi: 10.1029/2010GL043995.CrossRefGoogle Scholar
  151. Yin, Y., S. Wurzler, Z. Levin, et al., 2002: Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res., 107, AAC 19-1–AAC 19-14, doi: 10.1029/2001JD001544.Google Scholar
  152. Yin, Y., and L. Chen, 2007: The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos. Chem. Phys., 7, 3497–3505, doi: 10.5194/acp-7-3497- 2007.CrossRefGoogle Scholar
  153. Zender, C. S., and E. Y. Kwon, 2005: Regional contrasts in dust emission responses to climate. J. Geophys. Res., 110, D13201, doi: 10.1029/2004JD005501.CrossRefGoogle Scholar
  154. Zender, C. S., H. S. Bian, and D. Newman, 2003: Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108, doi: 10.1029/2002JD002775.Google Scholar
  155. Zhang, X. Y., R. Arimoto, and Z. S. An, 1997: Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res., 102, 28041–28047, doi: 10.1029/97JD02300.CrossRefGoogle Scholar
  156. Zhang, X. Y., S. L. Gong, T. L. Zhao, et al., 2003: Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett., 30, 2272, doi: 10.1029/2003GL018206.Google Scholar
  157. Zhang, H., Z. L. Wang, P. W. Guo, et al., 2009a: A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci., 26, 57–66, doi: 10.1007/s00376-009-0057-5.CrossRefGoogle Scholar
  158. Zhang, H., J. H. Ma, and Y. F. Zheng, 2009b: A modeling study of global radiative forcing due to dust aerosol. Acta Meteor. Sinica, 69, 510–521. (in Chinese)Google Scholar
  159. Zhang, L., X. Cao, J. Bao, et al., 2010: A case study of dust aerosol radiative properties over Lanzhou, China. Atmos. Chem. Phys., 10, 4283–4293, doi: 10.5194/acp-10-4283-2010.CrossRefGoogle Scholar
  160. Zhang, H., J. H. Ma, and Y. F. Zheng, 2010: Modeling study of the global distribution of radiative forcing by dust aerosol. Acta Meteor. Sinica, 24, 558–570.Google Scholar
  161. Zhang, H., Z. L. Wang, Z. Z. Wang, et al., 2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-Aerosol coupled system. Climate Dyn., 38, 1675–1693, doi: 10.1007/s00382-011-1131-0.CrossRefGoogle Scholar
  162. Zhao, T. L., S. L. Gong, X. Y. Zhang, et al., 2003: Modeled sizesegregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport. J. Geophys. Res., 108, 8665, doi: 10.1029/2002JD 003363.CrossRefGoogle Scholar
  163. Zhao, T. L., S. L. Gong, X. Y. Zhang, et al., 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part I: Mean climate and validation. J. Climate., 19, 88–103, doi: 10.1175/JCLI3605.1.Google Scholar
  164. Zhao, W., H. N. Liu, and J. Wu, 2008: Radiative and climate effects of dust aerosol in springs over China. J. Nanjing Univ. (Natural Sci.), 44, 598–607. (in Chinese)Google Scholar
  165. Zhao, C., X. Liu, L. R. Leung, et al., 2010: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments. Atmos. Chem. Phys., 10, 8821–8838, doi: 10.5194/acp-10-8821-2010.CrossRefGoogle Scholar
  166. Zhao, C., X. Liu, L. R. Leung, et al., 2011: Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos. Chem. Phys., 11, 1879–1893, doi: 10.5194/acp-11-1879-2011.CrossRefGoogle Scholar
  167. Zhao, C., S. Chen, L. R. Leung, et al., 2013a: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos. Chem. Phys., 13, 10733–10753, doi: 10.5194/acp-13-10733-2013.CrossRefGoogle Scholar
  168. Zhao, C., X. Liu, Y. Qian, et al., 2013b: A sensitivity study of radiative fluxes at the top of atmosphere to cloud-microphysics and aerosol parameters in the community atmosphere model CAM5. Atmos. Chem. Phys., 13, 10969–10987, doi: 10.5194/acp-13-10969-2013.CrossRefGoogle Scholar
  169. Zhao, C., Z. Hu, Y. Qian, et al., 2014: Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements. Atmos. Chem. Phys., 14, 11475–11491, doi: 10.5194/acp-14-11475-2014.CrossRefGoogle Scholar
  170. Zhao, S. Y., X. F. Zhi, H. Zhang, et al., 2014: Primary assessment of the simulated climatic state using a coupled aerosol–climate model BCC_AGCM2.0.1_CAM. Climatic Environ. Res., 19, 265–277, doi: 10.3878/j.issn.1006-9585.2012.12015. (in Chinese)Google Scholar
  171. Zhao, S. Y., H. Zhang, S. Feng, et al., 2015: Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol–climate coupled system. Int. J. Climatol., 35, 1858–1866, doi: 10.1002/joc.4093.CrossRefGoogle Scholar
  172. Zhou, C. H., S. L. Gong, X. Y. Zhang, et al., 2008: Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/dust. Atmos. Chem. Phys., 8, 787–798, doi: 10.5194/acp-8-787-2008.CrossRefGoogle Scholar
  173. Zou, L. W., Y. Qian, T. J. Zhou, et al., 2014: Parameter tuning and calibration of RegCM3 with MIT–Emanuel cumulus parameterization scheme over CORDEX East Asia domain. J. Climate, 27, 7687–7701, doi: 10.1175/Jcli-D-14-00229.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Siyu Chen
    • 1
  • Jianping Huang
    • 1
  • Yun Qian
    • 2
  • Chun Zhao
    • 2
  • Litai Kang
    • 1
  • Ben Yang
    • 3
  • Yong Wang
    • 4
  • Yuzhi Liu
    • 1
  • Tiangang Yuan
    • 1
  • Tianhe Wang
    • 1
  • Xiaojun Ma
    • 1
  • Guolong Zhang
    • 1
  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of EducationLanzhou UniversityLanzhouChina
  2. 2.Atmospheric Science and Global Change DivisionPacific Northwest National LaboratoryRichlandUSA
  3. 3.School of Atmospheric SciencesNanjing UniversityNanjingChina
  4. 4.Department of Earth System ScienceTsinghua UniversityBeijingChina

Personalised recommendations