Journal of Meteorological Research

, Volume 31, Issue 4, pp 791–799 | Cite as

Comparison of spatial interpolation methods for gridded bias removal in surface temperature forecasts

  • Seyedeh Atefeh Mohammadi
  • Majid Azadi
  • Morteza Rahmani


All numerical weather prediction (NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather forecasts need bias corrected forecasts at locations that scarcely have any historical bias data. To circumvent this limitation, the bias of surface temperature forecasts on a regular grid covering Iran is removed, by using the information available at observation stations in the vicinity of any given grid point. To this end, the running mean error method is first used to correct the forecasts at observation stations, then four interpolation methods including inverse distance squared weighting with constant lapse rate (IDSW-CLR), Kriging with constant lapse rate (Kriging-CLR), gradient inverse distance squared with linear lapse rate (GIDS-LR), and gradient inverse distance squared with lapse rate determined by classification and regression tree (GIDS-CART), are employed to interpolate the bias corrected forecasts at neighboring observation stations to any given location. The results show that all four interpolation methods used do reduce the model error significantly, but Kriging-CLR has better performance than the other methods. For Kriging-CLR, root mean square error (RMSE) and mean absolute error (MAE) were decreased by 26% and 29%, respectively, as compared to the raw forecasts. It is found also, that after applying any of the proposed methods, unlike the raw forecasts, the bias corrected forecasts do not show spatial or temporal dependency.

Key words

spatial interpolation bias correction lapse rate Kriging classification and regression tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, N., S. Chattopadhyay, U. C. Mohanty, et al., 2013: On the bias correction of general circulation model output for Indian summer monsoon. Meteor. Appl., 20, 349–356, doi: 10.1002/met.2013.20.issue-3.CrossRefGoogle Scholar
  2. Breiman, L., 2001: Random forests. Machine Learning, 45, 5–32, doi: 10.1023/A:1010933404324.CrossRefGoogle Scholar
  3. Breiman, L., J. Friedman, C. J. Stone, et al., 1984: Classification and Regression Trees. Taylor and Francis, Oxford, 368 pp.Google Scholar
  4. Courault, D., and P. Monestiez, 1999: Spatial interpolation of air temperature according to atmospheric circulation patterns in Southeast France. Int. J. Climato,l. 19, 365–378, doi: 10.1002/(SICI)1097-0088(19990330)19:4<365::AIDJOC369> 3.0.CO;2-E.CrossRefGoogle Scholar
  5. Cressie, N. A. C., 2015: Statistics for Spatial Data. Wiley, New York, 928 pp.Google Scholar
  6. Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Re,v. 87, 367–374, doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.CrossRefGoogle Scholar
  7. Dodson, R., and D. Marks, 1997: Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Res., 8, 1–20, doi: 10.3354/cr008001.CrossRefGoogle Scholar
  8. Galanis, G., and M. Anadranistakis, 2002: A one-dimensional Kalman filter for the correction of near surface temperature forecasts. Meteor. Appl., 9, 437–441, doi: 10.1017/S1350482702004061.CrossRefGoogle Scholar
  9. Gel, Y. R., 2007: Comparative analysis of the local observationbased (LOB) method and the nonparametric regression-based method for gridded bias correction in mesoscale weather forecasting. Wea. Forecasting, 22, 1243–1256, doi: 10.1175/2007WAF2006046.1.CrossRefGoogle Scholar
  10. Glahn, B., K. Gilbert, R. Cosgrove, et al., 2009: The gridding of MOS. Wea. Forecasting, 24, 520–529, doi: 10.1175/2008WAF2007080.1.CrossRefGoogle Scholar
  11. Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203–1211, doi: 10.1175/1520-0450(1972) 011<1203:TUOMOS>2.0.CO;2.CrossRefGoogle Scholar
  12. Hacker, J. P., and D. L. Rife, 2007: A practical approach to sequential estimation of systematic error on near-surface mesoscale grids. Wea. Forecastin,g 22, 1257–1273, doi: 10.1175/2007WAF2006102.1.CrossRefGoogle Scholar
  13. Homleid, M., 1995: Diurnal corrections of short-term surface temperature forecasts using the Kalman filter. Wea. Forecasting, 10, 689–707, doi: 10.1175/1520-0434(1995)010<0689: DCOSTS>2.0.CO;2.CrossRefGoogle Scholar
  14. Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction of five-day mean temperatures during winter. J. Atmos. Sci., 16, 672–682.Google Scholar
  15. Lam, H., K. K.-Y. Shum, and J. S.-Y. Tang, 2011: Regional temperature forecast for the next day in Hong Kong. Acta Meteor. Sinica, 25, 725–733, doi: 10.1007/s13351-011-0603-9.CrossRefGoogle Scholar
  16. Li, C., D. H. Chen, X. L. Li, et al., 2015: Effects of terrain-following vertical coordinates on high-resolution NWP simulations. J. Meteor. Res., 29, 432–445, doi: 10.1007/s13351-015-4212-x.CrossRefGoogle Scholar
  17. Li, J., P. Wang, H. Han, et al., 2016: On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. J. Meteor. Res., 30, 169–182, doi: 10.1007/s13351-016-5114-2.CrossRefGoogle Scholar
  18. Liston, G. E., and K. Elder, 2006: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217–234, doi: 10.1175/JHM486.1.CrossRefGoogle Scholar
  19. Marzban, C., 2003: Neural networks for postprocessing model output: ARPS. Mon. Wea. Rev,. 131, 1103–111,1 doi: 10.1175/1520-0493(2003)131<1103:NNFPMO>2.0.CO;2.CrossRefGoogle Scholar
  20. Mass, C. F., J. Baars, G. Wedam, et al., 2008: Removal of systematic model bias on a model grid. Wea. Forecasting, 23, 438–459, doi: 10.1175/2007WAF2006117.1.CrossRefGoogle Scholar
  21. Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 2417–2424, doi: 10.1175/1520-0493(1988) 116<2417:SSBOTM>2.0.CO;2.CrossRefGoogle Scholar
  22. Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic normals: Test of a new method in the Canadian boreal forest. Agric. Forest Meteor., 92, 211–225, doi: 10.1016/S0168-1923(98)00102-6.CrossRefGoogle Scholar
  23. Roeger, C., R. Stull, D. McClung, et al., 2003: Verification of mesoscale numerical weather forecasts in mountainous terrain for application to avalanche prediction. Wea. Forecasting, 18, 1140–1160, doi: 10.1175/1520-0434(2003)018< 1140:VOMNWF>2.0.CO;2.CrossRefGoogle Scholar
  24. Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR.Google Scholar
  25. Stahl, K., R. D. Moore, J. A. Floyer, et al., 2006: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. Forest Meteor., 139, 224–236, doi: 10.1016/j.agrformet.2006.07.004.CrossRefGoogle Scholar
  26. Stein, M. L., 1999: Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics, New York, USA, 249 pp.CrossRefGoogle Scholar
  27. Stensrud, D. J., and J. A. Skindlov, 1996: Gridpoint predictions of high temperature from a mesoscale model. Wea. Forecasting, 11, 103–110, doi: 10.1175/1520-0434(1996)011<0103:GPOHTF> 2.0.CO;2.CrossRefGoogle Scholar
  28. Sweeney, C. P., P. Lynch, and P. Nolan, 2013: Reducing errors of wind speed forecasts by an optimal combination of postprocessing methods. Meteor. Appl., 20, 32–40, doi: 10.1002/met.2013.20.issue-1.CrossRefGoogle Scholar
  29. Wang, D., J. F. Miao, and D. L. Zhang, 2015: Numerical simulations of local circulation and its response to land cover changes over the Yellow Mountains of China. J. Meteor. Res., 29, 667–681, doi: 10.1007/s13351-015-4070-6.CrossRefGoogle Scholar
  30. Warner, T. T., 2011: Numerical Weather and Climate Prediction. Cambridge University Press, Cambridge, 550 pp.Google Scholar
  31. Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble- MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 2379–2390, doi: 10.1175/MWR3402.1.CrossRefGoogle Scholar
  32. Yussouf, N., and D. J. Stensrud, 2006: Prediction of near-surface variables at independent locations from a bias-corrected ensemble forecasting system. Mon. Wea. Rev., 134, 3415–3424, doi: 10.1175/MWR3258.1.CrossRefGoogle Scholar
  33. Yuval, and W. W. Hsieh, 2003: An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks. Wea. Forecasting, 18, 303–310, doi: 10.1175/1520-0434(2003)018<0303:AANMSF>2.0.CO;2.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Seyedeh Atefeh Mohammadi
    • 1
  • Majid Azadi
    • 2
  • Morteza Rahmani
    • 3
  1. 1.Technology Development InstituteTehranIran
  2. 2.Atmospheric Science and Meteorological Research CenterTehranIran
  3. 3.Faculty of Basic and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran

Personalised recommendations