Journal of Meteorological Research

, Volume 31, Issue 4, pp 731–746 | Cite as

Assimilation of total lightning data using the three-dimensional variational method at convection-allowing resolution

  • Rong Zhang
  • Yijun Zhang
  • Liangtao Xu
  • Dong Zheng
  • Wen Yao
Article
  • 26 Downloads

Abstract

A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall, the improvement from lightning data assimilation can be maintained for about 3 h.

Key words

lightning data assimilation three-dimensional variational (3DVAR) method Wether Research and Forecasting (WRF) model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G. D., J. A. Weinman, V. M. Karyampudi, et al., 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm. Mon. Wea. Rev., 127, 1433–1457, doi: 10.1175/1520-0493(1999)127< 1433:TEOARR>2.0.CO;2.CrossRefGoogle Scholar
  2. Allen, B. J., E. R. Mansell, D. C. Dowell, et al., 2016: Assimilation of pseudo-GLM data using the ensemble Kalman filter. Mon. Wea. Rev., 144, 3465–3486, doi: 10.1175/MWR-D-16- 0117.1.CrossRefGoogle Scholar
  3. Barker, D., W. Huang, Y.-R. Guo, et al., 2003: A Three-dimensional Variational (3DVAR) Data Assimilation System for Use with MM5. NCAR Tech Note, Boulder, CO, 1–68.Google Scholar
  4. Barker, D. M., W. Huang, Y.-R. Guo, et al., 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897–914, doi: 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.CrossRefGoogle Scholar
  5. Barker, D., X.-Y. Huang, Z. Q. Liu, et al., 2012: The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831–843, doi: 10.1175/BAMS-D-11-00167.1.CrossRefGoogle Scholar
  6. Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202–225, doi: 10.1175/MWR-D-11-00046.1.CrossRefGoogle Scholar
  7. Cao, D. J., F. X. Huang, and X. S. Qie, 2014: Development and evaluation of detection algorithm for FY-4 Geostationary Lightning Imager (GLI) measurement. XV International Conference on Atmospheric Electricity, Norman, Oklahoma, 15–20 June, International Commission on Atmospheric Electricity, 1–6.Google Scholar
  8. Chang, D.-E., J. A. Weinman, C. A. Morales, et al., 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm. Mon. Wea. Rev., 129, 1809–1833, doi: 10.1175/1520-0493(2001)129<1809:TEOSMA>2.0.CO;2.CrossRefGoogle Scholar
  9. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  10. Fierro, A. O., A. J. Clark, E. R. Mansell, et al., 2015: Impact of storm-scale lightning data assimilation on WRF-ARW precipitation forecasts during the 2013 warm season over the contiguous United States. Mon. Wea. Rev., 143, 757–777, doi: 10.1175/MWR-D-14-00183.1.CrossRefGoogle Scholar
  11. Fierro, A. O., J. D. Gao, C. L. Ziegler, et al., 2014: Evaluation of a cloud-scale lightning data assimilation technique and a 3DVAR method for the analysis and short-term forecast of the 29 June 2012 derecho event. Mon. Wea. Rev,. 142, 183–202, doi: 10.1175/MWR-D-13-00142.1.CrossRefGoogle Scholar
  12. Fierro, A. O., J. D. Gao, C. L. Ziegler, et al., 2016: Assimilation of flash extent data in the variational framework at convectionallowing scales: Proof-of-concept and evaluation for the short-term forecast of the 24 May 2011 tornado outbreak. Mon. Wea. Rev., 144, 4373–4393, doi: 10.1175/MWR-D-16- 0053.1.CrossRefGoogle Scholar
  13. Fierro, A. O., E. R. Mansell, C. L. Ziegler, et al., 2012: Application of a lightning data assimilation technique in the WRFARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 2609–2627, doi: 10.1175/MWR-D-11-00299.1.CrossRefGoogle Scholar
  14. Goodman, S. J., R. J. Blakeslee, W. J. Koshak, et al., 2013: The GOES-R geostationary lightning mapper (GLM). Atmos. Res., 125–126, 34–49, doi: 10.1016/j.atmosres.2013.01.006.CrossRefGoogle Scholar
  15. Goodman, S. J., J. Gurka, M. DeMaria, et al., 2012: The GOES-R proving ground: Accelerating user readiness for the nextgeneration geostationary environmental satellite system. Bull. Amer. Meteor. Soc., 93, 1029–1040, doi: 10.1175/BAMS-D-11-00175.1.CrossRefGoogle Scholar
  16. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphsics scheme (WSM6). J. Korean Meteor. Soc., 42, 192–151.Google Scholar
  17. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi: 10.1175/MWR 3199.1.CrossRefGoogle Scholar
  18. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  19. Lagouvardos, K., V. Kotroni, E. Defer, et al., 2013: Study of a heavy precipitation event over southern France, in the frame of HYMEX project: Observational analysis and model results using assimilation of lightning. Atmos. Res., 134, 45–55, doi: 10.1016/j.atmosres.2013.07.003.CrossRefGoogle Scholar
  20. Li, W. B., G. Q. Song, and K. Tong, 2008: Applying TRMM-LIS lightning data to a numerical model. Acta Sci. Natur. Univ. Pekinensis, 44, 399–406. (in Chinese)Google Scholar
  21. Liu, D. X., X. S. Qie, L. X. Pan, et al., 2013: Some characteristics of lightning activity and radiation source distribution in a squall line over North China. Atmos. Res., 132–133, 423–433, doi: 10.1016/j.atmosres.2013.06.010.CrossRefGoogle Scholar
  22. Lynn, B. H., G. Kelman, and G. Ellrod, 2015: An evaluation of the efficacy of using observed lightning to improve convective lightning forecasts. Wea. Forecasting, 30, 405–423, doi: 10.1175/WAF-D-13-00028.1.CrossRefGoogle Scholar
  23. MacGorman, D. R., D. W. Burgess, V. Mazur, et al., 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–250, doi: 10.1175/1520-0469 (1989)046<0221:LRRTTS>2.0.CO;2.CrossRefGoogle Scholar
  24. Mansell, E. R., 2014: Storm-scale ensemble Kalman filter assimilation of total lightning flash-extent data. Mon. Wea. Rev., 142, 3683–3695, doi: 10.1175/MWR-D-14-00061.1.CrossRefGoogle Scholar
  25. Mansell, E. R., C. L. Ziegler, and D. R. MacGorman, 2007: A lightning data assimilation technique for mesoscale forecast models. Mon. Wea. Rev., 135, 1732–1748, doi: 10.1175/MWR 3387.1.CrossRefGoogle Scholar
  26. Marchand, M. R., and H. E. Fuelberg, 2014: Assimilation of lightning data using a nudging method involving low-level warming. Mon. Wea. Rev., 142, 4850–4871, doi: 10.1175/MWR-D-14-00076.1.CrossRefGoogle Scholar
  27. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682, doi: 10.1029/97JD00237.CrossRefGoogle Scholar
  28. Papadopoulos, A., T. G. Chronis, and E. N. Anagnostou, 2005: Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Wea. Rev., 133, 1961–1977, doi: 10.1175/MWR 2957.1.CrossRefGoogle Scholar
  29. Papadopoulos, A., E. Serpetzoglou, and E. N. Anagnostou, 2009: Evaluating the impact of lightning data assimilation on mesoscale model simulations of a flash flood inducing storm. Atmos. Res., 94, 715–725, doi: 10.1016/j.atmosres.2009.05.008.CrossRefGoogle Scholar
  30. Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, doi: 10.1175/1520-0493 (1992)120<1747:TNMCSS>2.0.CO;2.CrossRefGoogle Scholar
  31. Pessi, A. T., and S. Businger, 2009: The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean. Mon. Wea. Rev., 137, 3177–3195, doi: 10.1175/2009MWR2765.1.CrossRefGoogle Scholar
  32. Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103, 14025–14040, doi: 10.1029/97JD02064.CrossRefGoogle Scholar
  33. Qie, X. S., D. X. Liu, and Z. L. Sun, 2014a: Recent advances in research of lightning meteorology. J. Meteor. Res., 28, 983–1002, doi: 10.1007/s13351-014-3295-0.CrossRefGoogle Scholar
  34. Qie, X. S., R. P. Zhu, T. Yuan, et al., 2014b: Application of totallightning data assimilation in a mesoscale convective system based on the WRF model. Atmos. Res., 145–146, 255–266, doi: 10.1016/j.atmosres.2014.04.012.CrossRefGoogle Scholar
  35. Ran, L. K., and Y. S. Zhou, 2011: Application of lightning observations of TRMM satellite to the mesoscale numerical model by a new nudging assimilation adjustment technique. Chinese J. Atmos. Sci., 35, 1145–1158. (in Chinese)Google Scholar
  36. Rudlosky, S. D., and H. E. Fuelberg, 2013: Documenting storm severity in the mid-Atlantic region using lightning and radar information. Mon. Wea. Rev., 141, 3186–3202, doi: 10.1175/MWR-D-12-00287.1.CrossRefGoogle Scholar
  37. Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloudto-ground lightning trends. Wea. Forecasting, 26, 744–755, doi: 10.1175/WAF-D-10-05026.1.CrossRefGoogle Scholar
  38. Wang, H. L., J. Z. Sun, S. Y. Fan, et al., 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889–902, doi: 10.1175/JAMC-D-12-0120.1.CrossRefGoogle Scholar
  39. Wang, X. G., D. M. Barker, C. Snyder, et al., 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 5116–5131, doi: 10.1175/2008MWR2444.1.CrossRefGoogle Scholar
  40. Wang, X. G., D. M. Barker, C. Snyder, et al., 2008b: A ETKF–3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 5132–5147, doi: 10.1175/2008MWR2445.1.CrossRefGoogle Scholar
  41. Wang, Y., Y. Yang, and C. H. Wang, 2014: Improving forecasting of strong convection by assimilating cloud-to-ground lightning data using the physical initialization method. Atmos. Res., 150, 31–41, doi: 10.1016/j.atmosres.2014.06.017.CrossRefGoogle Scholar
  42. Wang, Y. D., Y. J. Zhou, X. Y. Wang, et al., 2014: A study on the assimilation method of lightning data with mesoscale model WRF. J. Trop. Meteor., 30, 281–292. (in Chinese)Google Scholar
  43. Xu, S., D. Zheng, Y. Q. Wang, et al., 2016: Characteristics of the two active stages of lightning activity in two hailstorms. J. Meteor. Res., 30, 265–281, doi: 10.1007/s13351-016-5074-6.CrossRefGoogle Scholar
  44. Zhang, D.-L., L. Q. Tian, and M.-J. Yang, 2011: Genesis of Typhoon Nari (2001) from a mesoscale convective system. J. Geophys. Res., 116, D23104, doi: 10.1029/2011JD016640.CrossRefGoogle Scholar
  45. Zhang, C. X., Y. Q. Wang, A. Lauer, et al., 2012: Configuration and evaluation of the WRF model for the study of Hawaiian regional climate. Mon. Wea. Rev,. 140, 3259–3277, doi: 10.1175/MWR-D-11-00260.1.CrossRefGoogle Scholar
  46. Zheng, D., Y. J. Zhang, Q. Meng, et al., 2009: Total lightning characteristics and electric structure evolution in a hailstorm. Acta Meteor. Sinica, 23, 233–249.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rong Zhang
    • 1
    • 2
    • 3
  • Yijun Zhang
    • 1
    • 3
  • Liangtao Xu
    • 1
    • 3
  • Dong Zheng
    • 1
    • 3
  • Wen Yao
    • 1
    • 3
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.College of Earth SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory of Lightning Physics and Protection EngineeringChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations