Advertisement

Journal of Meteorological Research

, Volume 31, Issue 3, pp 468–475 | Cite as

Physical processes responsible for the interannual variability of sea ice concentration in Arctic in boreal autumn since 1979

  • Lei Zhang
  • Tim Li
Article

Abstract

Arctic sea ice concentration (ASIC) in boreal autumn exhibits prominent interannual variability since 1979. The physical mechanism responsible for the year-to-year variation of ASIC is investigated through observational data analyses and idealized numerical modeling. It is found that the ASIC interannual variability is closely associated with the anomalous meridional circulations over the Northern Hemisphere, which is further linked with the tropical sea surface temperature (SST) forcing. A tropics-wide SST cooling anomaly leads to an enhanced meridional SST gradient to the north of the equator in boreal summer, generating strengthened and northward shifting Hadley circulation over the Northern Hemisphere. Consequently, the meridional circulations are enhanced and pushed poleward, leading to an enhanced descending motion at the North Pole, surrounded by an ascending motion anomaly; the surface outflow turns into easterly anomalies, opposing the mean-state winds. As a result, positive cloudiness and weakened surface wind speed emerge, which reduce ASIC through changes in the surface latent heat flux and the downward longwave radiation.

Keywords

Arctic sea ice variability interannual variability tropical forcing meridional circulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by the International Pacific Research Center that is partially sponsored by the Japan Agency for Marine–Earth Science and Technology (JAMSTEC). This is SOEST contribution number 9871, IPRC contribution number 1225, and ESMC contribution number 135.

References

  1. Blüthgen, J., R. Gerdes, and M. Werner, 2012: Atmospheric response to the extreme Arctic sea ice conditions in 2007. Geophys. Res. Lett., 39, L02707, doi: 10.1029/2011GL050486.CrossRefGoogle Scholar
  2. Boé, J., A. Hall, and X. Qu, 2009: Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate, 22, 4682–4695, doi: 10.1175/2009JCLI2885.1.CrossRefGoogle Scholar
  3. Boer, G., and B. Yu, 2003: Climate sensitivity and response. Climate Dyn., 20, 415–429.Google Scholar
  4. Comiso, J. C., C. L. Parkinson, R. Gersten, et al., 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L031972.CrossRefGoogle Scholar
  5. Deser, C., R. Tomas, M. Alexander, et al., 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333–351, doi: 10.1175/2009JCLI3053.1.CrossRefGoogle Scholar
  6. Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 39, L06801.CrossRefGoogle Scholar
  7. Gorodetskaya, I. V., L. B. Tremblay, B. Liepert, et al., 2008: The influence of cloud and surface properties on the Arctic Ocean shortwave radiation budget in coupled models. J. Climate, 21, 866–882, doi: 10.1175/2007JCLI1614.1.CrossRefGoogle Scholar
  8. Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 1550–1568, doi: 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.CrossRefGoogle Scholar
  9. Hilmer, M., and P. Lemke, 2000: On the decrease of Arctic sea ice volume. Geophys. Res. Lett., 27, 3751–3754, doi: 10.1029/2000GL011403.CrossRefGoogle Scholar
  10. Holland, M. M., and C. M. Bitz, 2003: Polar amplification of cli-mate change in coupled models. Climate Dyn., 21, 221–232, doi: 10.1007/s00382-003-0332-6.CrossRefGoogle Scholar
  11. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707.CrossRefGoogle Scholar
  12. Huffman, G. J., R. F. Adler, D.T. Bolvin, et al., 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi: 10.1029/2009GL040000.CrossRefGoogle Scholar
  13. Jaiser, R., K. Dethloff, D. Handorf, et al., 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64, 11595.CrossRefGoogle Scholar
  14. Johannessen, O. M., M. Miles, and E. Bjørgo, 1995: The Arctic’s shrinking sea ice. Nature, 376, 126–127, doi: 10.1038/376126a0.CrossRefGoogle Scholar
  15. Johannessen, O. M., E. V. Shalina, and M. W. Miles, 1999: Satellite evidence for an Arctic sea ice cover in transformation. Science, 286, 1937–1939, doi: 10.1126/science.286.5446.1937.CrossRefGoogle Scholar
  16. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  17. Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res. Atmos., 114(D18), D18204, doi: 10.1029/2009JD011773.CrossRefGoogle Scholar
  18. Kay, J. E., M. M. Holland, and A. Jahn, 2011: Interannual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett., 38, L15708.CrossRefGoogle Scholar
  19. Kay, J. E., M. M. Holland, C. M. Bitz, et al., 2012: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 5433–5450, doi: 10.1175/JCLI-D-11-00622.1.CrossRefGoogle Scholar
  20. Lindsay, R., M. Wensnahan, A. Schweiger, et al., 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 2588–2606, doi: 10.1175/JCLI-D-13-00014.1.CrossRefGoogle Scholar
  21. Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 1451–1460, doi: 10.1175/2010JCLI3713.1.CrossRefGoogle Scholar
  22. Makshtas, A. P., S. V. Shoutilin, and E. L. Andreas, 2003: Possible dynamic and thermal causes for the recent decrease in sea ice in the Arctic Basin. J. Geophys. Res. Oceans, 108(C7), 3232, doi: 10.1029/2001JC000878.CrossRefGoogle Scholar
  23. Meier, W., J. Stroeve, F. Fetterer, et al., 2005: Reductions in Arctic sea ice cover no longer limited to summer. Eos, Trans. Amer. Geophys. Union, 86, 326.CrossRefGoogle Scholar
  24. Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A, 62, 1–9.CrossRefGoogle Scholar
  25. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  26. Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, doi: 10.1175/1520-0442(2002)015<1609:AIISAS7gt;2.0.CO;2.CrossRefGoogle Scholar
  27. Roeckner, E., K. Arpe, L. Bengtsson, et al., 1996: The Atmospheric General Circulation model ECHAM-4: Model Description and Simulation of Present-Day Climate. Max-Planck-Institut fur Meteorologie Rep. 218, Hamburg, Germany, 90 pp.Google Scholar
  28. Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 1533–1536, doi: 10.1126/science.1139426.CrossRefGoogle Scholar
  29. Shimada, K., T. Kamoshida, M. Itoh, et al., 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, doi: 10.1029/2005GL025624.Google Scholar
  30. Stroeve, J., M. Serreze, S. Drobot, et al., 2008: Arctic sea ice extent plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89, 13–14, doi: 10.1029/2008EO020001.CrossRefGoogle Scholar
  31. Vavrus, S., and S. P. Harrison, 2003: The impact of sea-ice dynamics on the Arctic climate system. Climate Dyn., 20, 741–757.Google Scholar
  32. Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701.Google Scholar
  33. Wu, F., J. H. He, L. Qi, et al., 2014: The seasonal difference of Arctic warming and it’s mechanism under sea ice cover diminishing. Acta Oceanol. Sinica, 36, 39–47, doi: 10.3969/j.issn.0253-4193.2014.03.005. (in Chinese)Google Scholar
  34. Zhang, J. L., D. Rothrock, and M. Steele, 2000: Recent changes in Arctic sea ice: The interplay between ice dynamics and thermodynamics. J. Climate, 13, 3099–3114, doi: 10.1175/1520-0442(2000)013<3099:RCIASI>2.0.CO;2.CrossRefGoogle Scholar
  35. Zhang, L., and T. Li, 2016: Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming. Climate Dyn., doi: 10.1007/s00382-016-3123-6.Google Scholar
  36. Zhang, X. D., A. Sorteberg, J. Zhang, et al., 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, doi: 10.1029/2008GL035607.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Climate Dynamics Research Center and Earth System Modeling Center, International Laboratory on Climate and Environment ChangeNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Department of Atmospheric SciencesUniversity of HawaiiHonoluluUSA

Personalised recommendations