Advertisement

Journal of Meteorological Research

, Volume 31, Issue 1, pp 204–223 | Cite as

Prediction of primary climate variability modes at the Beijing Climate Center

  • Hong-Li RenEmail author
  • Fei-Fei Jin
  • Lianchun Song
  • Bo Lu
  • Ben Tian
  • Jinqing Zuo
  • Ying Liu
  • Jie Wu
  • Chongbo Zhao
  • Yu Nie
  • Peiqun Zhang
  • Jin Ba
  • Yujie Wu
  • Jianghua Wan
  • Yuping Yan
  • Fang Zhou
Article

Abstract

Climate variability modes, usually known as primary climate phenomena, are well recognized as the most important predictability sources in subseasonal–interannual climate prediction. This paper begins by reviewing the research and development carried out, and the recent progress made, at the Beijing Climate Center (BCC) in predicting some primary climate variability modes. These include the El Niño–Southern Oscillation (ENSO), Madden–Julian Oscillation (MJO), and Arctic Oscillation (AO), on global scales, as well as the sea surface temperature (SST) modes in the Indian Ocean and North Atlantic, western Pacific subtropical high (WPSH), and the East Asian winter and summer monsoons (EAWM and EASM, respectively), on regional scales. Based on its latest climate and statistical models, the BCC has established a climate phenomenon prediction system (CPPS) and completed a hindcast experiment for the period 1991–2014. The performance of the CPPS in predicting such climate variability modes is systematically evaluated. The results show that skillful predictions have been made for ENSO, MJO, the Indian Ocean basin mode, the WPSH, and partly for the EASM, whereas less skillful predictions were made for the Indian Ocean Dipole (IOD) and North Atlantic SST Tripole, and no clear skill at all for the AO, subtropical IOD, and EAWM. Improvements in the prediction of these climate variability modes with low skill need to be achieved by improving the BCC’s climate models, developing physically based statistical models as well as correction methods for model predictions. Some of the monitoring/prediction products of the BCC-CPPS are also introduced in this paper.

Key words

climate phenomenon prediction system (CPPS) El Niño–Southern Oscillation (ENSO) Madden–Julian Oscillation (MJO) Arctic Oscillation (AO) Beijing Climate Center (BCC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to the three anonymous reviewers for their insightful comments, which helped to improve the quality of the paper.

References

  1. Ahn, J. B., and H. J. Kim, 2014: Improvement of 1-month lead predictability of the wintertime AO using a realistically varying solar constant for a CGCM. Meteor. Appl., 21, 415–418, doi: 10.1002/met.1372.CrossRefGoogle Scholar
  2. Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112(C11), C11007.CrossRefGoogle Scholar
  3. Barnston, A. G., M. K. Tippett, M. L. L'Heureux, et al., 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651.CrossRefGoogle Scholar
  4. Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327–330.CrossRefGoogle Scholar
  5. Brönnimann, S., 2007: The impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003, doi: 10.1029/2006RG000199.CrossRefGoogle Scholar
  6. Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827–832.CrossRefGoogle Scholar
  7. Capotondi, A., A. T. Wittenberg, M. Newman, et al., 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938.CrossRefGoogle Scholar
  8. Chang, C.-P., 2004: East Asian Monsoon (World Scientific Series on Meteorology of East Asia). World Scientific Publishing, Singapore, 1–572.Google Scholar
  9. Chen, D. K., S. E. Zebiak, A. J. Busalacchi, et al., 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 1699–1702.CrossRefGoogle Scholar
  10. Cheng, Y. B., H.-L. Ren, and G. R. Tan, 2016: Empirical orthogonal function-analogue correction of extra-seasonal dynamical prediction of East Asian summer monsoon. J. Appl. Meteor. Sci., 27, 285–292. (in Chinese)Google Scholar
  11. Cheng, Y. J., Y. M. Tang, X. B. Zhou, et al., 2010: Further analysis of singular vector and ENSO predictability in the Lamont model—Part I: Singular vector and the control factors. Climate Dyn., 35, 807–826.CrossRefGoogle Scholar
  12. Christensen, J. H., K. K. Kumar, E. Aldrian, et al., 2013: Chapter 14: Climate phenomena and their relevance for future regional climate change. IPCC WGI Fifth Assessment Report. Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom, New York, NY.Google Scholar
  13. Cohen, J., D. Salstein, and K. Saito, 2002: A dynamical framework to understand and predict the major Northern Hemisphere mode. Geophys. Res. Lett., 29, 51-1–51-4.Google Scholar
  14. Derome, J., H. Lin, and G. Brunet, 2005: Seasonal forecasting with a simple general circulation model: Predictive skill in the AO and PNA. J. Climate, 18, 597–609.CrossRefGoogle Scholar
  15. Ding, R. Q., K. J. Ha, and J. P. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 1059–1071.CrossRefGoogle Scholar
  16. Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, doi: 10.1007/s00703-005-0125-z.CrossRefGoogle Scholar
  17. Ding, Y. H., Y. M. Liu, Y. J. Song, et al., 2002: Research and experiments of the dynamical model system for short-term climate prediction. Climatic Environ. Res., 7, 236–246. (in Chinese)Google Scholar
  18. Duan, W. S., and J. Y. Hu, 2016: The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: Results from an earth system model. Climate Dyn., 46, 3599–3615, doi: 10.1007/s00382-015-2789-5.CrossRefGoogle Scholar
  19. Duan, W. S., P. Zhao, J. Y. Hu, et al., 2016: The role of nonlinear forcing singular vector tendency error in causing the “spring predictability barrier” for ENSO. J. Meteor. Res., 30, 853–866, doi: 10.1007/s13351-016-6011-4.CrossRefGoogle Scholar
  20. Fan, K., B. Q. Tian, and H. J. Wang, 2016: New approaches for the skillful prediction of the winter North Atlantic Oscillation based on coupled dynamic climate models. Int. J. Climatol., 36, 82–94.CrossRefGoogle Scholar
  21. Feng, J., L. Wang, W. Chen, et al., 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res., 115, D24122, doi: 10.1029/2010JD014761.CrossRefGoogle Scholar
  22. García-Serrano, J., and C. Frankkignoul, 2014: High predictability of the winter Euro–Atlantic climate from cryospheric variability. Nat. Geosci., 7, E1, doi: 10.1038/ngeo2118.CrossRefGoogle Scholar
  23. Griffies, S. M., A. Gnanadesikan, K. W. Dixon, et al., 2005: Formulation of an ocean model for global climate simulations. Ocean Science, 1, 45–79.CrossRefGoogle Scholar
  24. Guo, Q. Y., 1994: Relationship between the variations of East Asian winter monsoon and temperature anomalies in China. Quart. J. Appl. Meteor., 5, 218–225. (in Chinese)Google Scholar
  25. Ham, Y.-G., J.-S. Kug, and I.-S. Kang, 2009: Optimal initial perturbations for El Niño ensemble prediction with ensemble Kalman filter. Climate Dyn., 33, 959–973.CrossRefGoogle Scholar
  26. Hendon, H. H., E. Lim, G. M. Wang, et al., 2009: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett., 36, L19713.CrossRefGoogle Scholar
  27. Hu, K. M., G. Huang, and R. H. Huang, 2011: The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Climate, 24, 5365–5377.CrossRefGoogle Scholar
  28. Hu, Z.-Z., A. Kumar, B. Huang, et al., 2017: Interdecadal variations of ENSO around 1999/2000. J. Meteor. Res., 31, 73–81, doi: 10.1007/s13351-017-6074-x.CrossRefGoogle Scholar
  29. Imada, Y., H. Tatebe, M. Ishii, et al., 2015: Predictability of two types of El Niño assessed using an extended seasonal prediction system by MIROC. Mon. Wea. Rev., 143, 4597–4617.CrossRefGoogle Scholar
  30. Izumo, T., J. Vialard, M. Lengaigne, et al., 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nature Geoscience, 3, 168–172.CrossRefGoogle Scholar
  31. Jeong, H.-I., D. Y. Lee, K. Ashok, et al., 2012: Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Climate Dyn., 39, 475–493.CrossRefGoogle Scholar
  32. Jeong, H.-I., J.-B. Ahn, J.-Y. Lee, et al., 2015: Interdecadal change of interannual variability and predictability of two types of ENSO. Climate Dyn., 44, 1073–1091.CrossRefGoogle Scholar
  33. Jia, X. L., and C. Y. Li, 2005: Dipole oscillation in the southern Indian Ocean and its impacts on climate. Chinese J. Geophy., 48, 1238–1249. (in Chinese)Google Scholar
  34. Jia, X. L., L. J. Chen, F. M. Ren, et al., 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521–533.CrossRefGoogle Scholar
  35. Jin, E. K., J. L. Kinter III, B. Wang, et al., 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647–664.CrossRefGoogle Scholar
  36. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.CrossRefGoogle Scholar
  37. Kang, D., M. I. Lee, J. Im, et al., 2014: Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys. Res. Lett., 41, 3577–3585.CrossRefGoogle Scholar
  38. Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008JCLI2309.1.CrossRefGoogle Scholar
  39. Kim, H.-J., and J.-B. Ahn, 2015: Improvement in prediction of the Arctic Oscillation with a realistic ocean initial condition in a CGCM. J. Climate, 28, 8951–8967.CrossRefGoogle Scholar
  40. Kirtman, P. B., 2003: The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131, 2324–2341.CrossRefGoogle Scholar
  41. Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.CrossRefGoogle Scholar
  42. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515.CrossRefGoogle Scholar
  43. Kumar, A., M. Y. Chen, Y. Xue, et al., 2015: An analysis of the temporal evolution of ENSO prediction skill in the context of the equatorial Pacific Ocean observing system. Mon. Wea. Rev., 143, 3204–3213.CrossRefGoogle Scholar
  44. Latif, M., D. Anderson, T. Barnett, et al., 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14375–14393.CrossRefGoogle Scholar
  45. Li, C. Y., and M. Q. Mu, 2001: The influence of the Indian Ocean dipole on atmospheric circulation and climate. Adv. Atmos. Sci., 18, 831–843.Google Scholar
  46. Li, S. L., J. Lu, G. Huang, et al., 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088.CrossRefGoogle Scholar
  47. Li, T., 2014: Recent advance in understanding the dynamics of 236 the Madden–Julian oscillation. J. Meteor. Res., 28, 1–33.Google Scholar
  48. Lin, H., G. Brunet, J. Derome, 2008: Forecast skill of the Madden-Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 4130–4149.CrossRefGoogle Scholar
  49. Liu, X. W., T. W. Wu, S. Yang, et al., 2015: Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m). Adv. Atmos. Sci., 32, 1156–1172.CrossRefGoogle Scholar
  50. Lu, B., and H.-L. Ren, 2016: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs. Dyn. Atmos. Oceans, 76, 127–140, doi: 10.1016/j.dynatmoce. 2016.10.005.CrossRefGoogle Scholar
  51. Luo, J. J., S. Masson, S. Behera, et al., 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 4474–4497.CrossRefGoogle Scholar
  52. Luo, J. J., S. Masson, S. Behera, et al., 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 2178–2190.CrossRefGoogle Scholar
  53. Luo, J. J., S. Behera, Y. Masumoto, et al., 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02.CrossRefGoogle Scholar
  54. MacLachlan, C., A. Arribas, K. A. Peterson, et al., 2015: Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084.CrossRefGoogle Scholar
  55. McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480.CrossRefGoogle Scholar
  56. North, G. R., F. J. Moeng, T. L. Bell, et al., 1982: The latitude dependence of the variance of zonally averaged quantities. Mon. Wea. Rev., 110, 319–326.CrossRefGoogle Scholar
  57. Qi, Y. J., and R. H. Zhang, 2015: A review of the intraseasonal oscillation associated with rainfall over eastern China and its operational application. J. Trop. Meteor., 31, 566–576. (in Chinese)Google Scholar
  58. Qian, Z. L., H. J. Wang, and J. Q. Sun, 2011: The hindcast of winter and spring Arctic and Antarctic Oscillation with the coupled climate models. Acta Meteor. Sinica, 25, 340–354.CrossRefGoogle Scholar
  59. Rashid, H. A., H. H. Hendon, M. C. Wheeler, et al., 2011: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649–661.CrossRefGoogle Scholar
  60. Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.CrossRefGoogle Scholar
  61. Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL 046031.CrossRefGoogle Scholar
  62. Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523.CrossRefGoogle Scholar
  63. Ren, H.-L., and Y. Y. Shen, 2016: A new look at impacts of MJO on weather and climate in China. Adv. Meteor. Sci. Tech., 6, 97–105. (in Chinese)Google Scholar
  64. Ren, H.-L., F.-F. Jin, J.-S. Kug, et al., 2009: A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophys. Res. Lett,. 36, L11709, doi: 10.1029/2009GL 037294.CrossRefGoogle Scholar
  65. Ren, H.-L., F.-F. Jin, J.-S. Kug, et al., 2011: Transformed eddy-PV flux and positive synoptic eddy feedback onto low-frequency flow. Climate Dyn., 36, 2357–2370.CrossRefGoogle Scholar
  66. Ren, H.-L., F.-F. Jin, and L. Gao, 2012: Anatomy of synoptic eddy-NAO interaction through eddy structure decomposition. J. Atmos. Sci., 69, 2171–2191.CrossRefGoogle Scholar
  67. Ren, H.-L., F.-F. Jin, M. F. Stuecker, et al., 2013: ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan, 91, 835–842.CrossRefGoogle Scholar
  68. Ren, H.-L., Y. Liu, F.-F. Jin, et al., 2014: Application of the analogue-based correction of errors method in ENSO prediction. Atmos. Oceanic Sci. Lett., 7, 157–161.CrossRefGoogle Scholar
  69. Ren, H.-L., J. Wu, C. B. Zhao, et al., 2015: Progresses of MJO prediction researches and developments. J. Appl. Meteor. Sci., 26, 658–668. (in Chinese)Google Scholar
  70. Ren, H.-L., F.-F. Jin, B. Tian, et al., 2016a: Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43, 10973–10979, doi: 10.1002/2016GL071015.CrossRefGoogle Scholar
  71. Ren, H.-L., J. Wu, C. B. Zhao, et al., 2016b: MJO ensemble prediction in BCC_CSM1.1(m) using different initialization schemes. Atmos. Oceanic Sci. Lett., 9, 60–65.CrossRefGoogle Scholar
  72. Ren, H.-L., Y. Liu, J. Q. Zuo, et al., 2016c: The new generation of ENSO prediction system in Beijing Climate Centre and its predictions for 2014/2016 super El Niño event. Meteor. Mon., 42, 521–531, doi: 10.7519/j.issn.1000-0526.2016.05.001. (in Chinese)Google Scholar
  73. Ren, H.-L., J. Q. Zuo, F.-F. Jin, et al., 2016d: ENSO and annual cycle interaction: The combination mode representation in CMIP5 models. Climate Dyn., 46, 3753–3765, doi: 10.1007/s00382-015-2802-z.CrossRefGoogle Scholar
  74. Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.CrossRefGoogle Scholar
  75. Riddle, E. E., A. H. Butler, J. C. Furtado, et al., 2013: CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 1099–1116.CrossRefGoogle Scholar
  76. Saha, S., S. Moorthi, X. R. Wu, et al., 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185–2208, doi: 10.1175/JCLI-D-12-00823.1.CrossRefGoogle Scholar
  77. Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole Mode events on global climate. Climate Res., 25, 151–169.CrossRefGoogle Scholar
  78. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.Google Scholar
  79. Scaife, A. A., A. Arribas, E. Blockley, et al., 2014: Skillful longrange prediction of European and North American winters. Geophys. Res. Lett., 41, 2514–2519.CrossRefGoogle Scholar
  80. Shi, L., H.-H Hendon, O. Alves, et al., 2012: How predictable is the Indian Ocean Dipole? Mon. Wea. Rev., 140, 3867–3884.CrossRefGoogle Scholar
  81. Shi, N., J. J. Lu, and Q. G. Zhu, 1996: East Asian winter/summer monsoon intensity indices with their climatic change in 1873–1989. J. Nanjing Inst. Meteor., 19, 168–177. (in Chinese)Google Scholar
  82. Stuecker, M. F., A. Timmermann, F.-F. Jin, et al., 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geoscience, 6, 540–544.CrossRefGoogle Scholar
  83. Sun, J. Q., and J.-B. Ahn, 2015: Dynamical seasonal predictability of the Arctic Oscillation using a CGCM. Int. J. Climatol., 35, 1342–1353.CrossRefGoogle Scholar
  84. Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300.CrossRefGoogle Scholar
  85. Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016.CrossRefGoogle Scholar
  86. Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89.CrossRefGoogle Scholar
  87. Visbeck, M. H., J. W. Hurrell, L. Polvani, et al., 2001: The North Atlantic oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA, 98, 12876–12877.CrossRefGoogle Scholar
  88. Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 1889–1899.CrossRefGoogle Scholar
  89. Waliser, D., K. Weickmann, R. Dole, et al., 2006: The experimental MJO prediction project. Bull. Amer. Meteor. Soc., 87, 425–431.CrossRefGoogle Scholar
  90. Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms–one phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791–805.CrossRefGoogle Scholar
  91. Wang, B., J.-Y. Lee, I.-S. Kang, et al., 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/Cli-PAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93–117.CrossRefGoogle Scholar
  92. Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718–2722.CrossRefGoogle Scholar
  93. Wang, H. J., K. Fan, J. Q. Sun, et al., 2015: A review of seasonal climate prediction research in China. Adv. Atmos. Sci., 32, 149–168.CrossRefGoogle Scholar
  94. Wang, R., and H.-L. Ren, 2017: The linkage of two ENSO types/modes with the interdecadal changes of ENSO around the year 2000. Atmos. Oceanic Sci. Lett., 10, 168–174, doi: 10.1080/16742834.2016.1258952.CrossRefGoogle Scholar
  95. Wang, S. W., Z. C. Zhao, D. Y. Gong, et al., 2005: An Introduction to Modern Climate Science. China Meteorological Press, Beijing, 1–241. (in Chinese)Google Scholar
  96. Wang, W. Q., M. P. Hung, S. J. Weaver, et al., 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 2509–2520.CrossRefGoogle Scholar
  97. Wang, X. J., Z. H. Zheng, G. L. Feng, et al., 2015: Summer prediction of sea surface temperatures in key areas in BCC_CSM model. Chinese J. Atmos. Sci., 39, 271–288. (in Chinese)Google Scholar
  98. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.CrossRefGoogle Scholar
  99. Webster, P. J., A. M. Moore, J. P. Loschnigg, et al., 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360.CrossRefGoogle Scholar
  100. Weng, H. Y., K. Ashok, S. K. Behera, et al., 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113–129, doi: 10.1007/s00382-007-0234-0.CrossRefGoogle Scholar
  101. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.CrossRefGoogle Scholar
  102. Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Ocean. Tech., 17, 525–531.CrossRefGoogle Scholar
  103. Wu, J., H.-L. Ren, C. B. Zhao, et al., 2016a: Research and application of operational MJO monitoring and prediction products in Beijing Climate Center. J. Appl. Meteor. Sci., 27, 641–653, doi: 10.11898/1001-7313.20160601. (in Chinese)Google Scholar
  104. Wu, J., H.-L. Ren, J. Q. Zuo, et al., 2016b: MJO prediction skill, predictability, and teleconnection impacts in the Beijing Climate Center Atmospheric General Circulation Model. Dyn. Atmos. Oceans, 75, 78–90, doi: 10.1016/j.dynatmoce.2016. 06.001.CrossRefGoogle Scholar
  105. Wu, T. W., R. C. Yu, F. Zhang, et al., 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147.CrossRefGoogle Scholar
  106. Wu, T. W., W. P. Li, J. J. Ji, et al., 2013: Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century. J. Geophys. Res., 118, 4326–4347, doi: 10.1002/jgrd.50320.Google Scholar
  107. Wu, T. W., L. C. Song, W. P. Li, et al., 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 34–56.Google Scholar
  108. Wu, Z. W., B. Wang, J. P. Li, et al., 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi: 10.1029/2009JD011733.CrossRefGoogle Scholar
  109. Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327–340, doi: 10.1007/s00382-012-1427-8.CrossRefGoogle Scholar
  110. Xiao, Z. N., H. M. Yan, and C. Y. Li, 2002: The relationship between Indian Ocean SSTA dipole index and the precipitation and temperature over China. J. Trop. Meteor., 18, 335–344. (in Chinese)Google Scholar
  111. Xie, S.-P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747.CrossRefGoogle Scholar
  112. Xue, F., Q. C. Zeng, R. H. Huang, et al., 2015: Recent advances in monsoon studies in China. Adv. Atmos. Sci., 32, 206–229.CrossRefGoogle Scholar
  113. Yang, J. L., Q. Y. Liu, and Z. Y. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 5889–5902.CrossRefGoogle Scholar
  114. Yang, J. L., Q. Y. Liu, S.-P. Xie, et al., 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708.Google Scholar
  115. Yang, J. S., and X. W. Jiang, 2014: Prediction of eastern and central Pacific ENSO events and their impacts on East Asian climate by the NCEP climate forecast system. J. Climate, 27, 4451–4472, doi: 10.1175/JCLI-D-13-00471.1.CrossRefGoogle Scholar
  116. Yang, M. Z., and Y. H. Ding, 2007: A study of the impact of South Indian Ocean Dipole on the summer rainfall in China. Chinese J. Atmos. Sci., 31, 685–694. (in Chinese)Google Scholar
  117. Yang, M. Z., Y. H. Ding, W. J. Li, et al., 2007: Leading mode of Indian ocean SST and its impacts on Asian summer monsoon. Acta Meteor. Sinica, 65, 527–536. (in Chinese)Google Scholar
  118. Yang, Q. M., 2006: Indian Ocean subtropical dipole and variations of global circulations and rainfall in China. Acta Oceanologica Sinica, 28, 47–56. (in Chinese)Google Scholar
  119. Yu, J. Y., and S. T. Kim, 2010: Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys. Res. Lett., 37, L15705.Google Scholar
  120. Yuan, Y., H. Yang, W. Zhou, et al., 2008: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 1849–1859, doi: 10.1002/joc.1678.CrossRefGoogle Scholar
  121. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.CrossRefGoogle Scholar
  122. Zhai, P. M., R. Yu, Y. J. Guo, et al., 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J. Meteor. Res., 30, 283–297.CrossRefGoogle Scholar
  123. Zhang, C.-D., 2013: Madden–Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849–1870.CrossRefGoogle Scholar
  124. Zhang, Q. Y., S. Y. Tao, and L. T. Chen, 2003: The inter-annual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia. Acta Meteor. Sinica, 61, 559–568. (in Chinese)CrossRefGoogle Scholar
  125. Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the’ 86/87 and’ 91/92 events. J. Meteor. Soc. Japan, 74, 49–62.Google Scholar
  126. Zhang, W. J., F.-F. Jin, J. P. Li, et al., 2011: Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89, 563–569.CrossRefGoogle Scholar
  127. Zhang, W. J., F.-F. Jin, H.-L. Ren, et al., 2012: Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteor. Soc. Japan, 90, 535–552.CrossRefGoogle Scholar
  128. Zhao, C. B., T. J. Zhou, L. C. Song, et al., 2014: The boreal summer intraseasonal oscillation simulated by four Chinese AGCMs participating in CMIP5 project. Adv. Atmos. Sci., 31, 1167–1180.CrossRefGoogle Scholar
  129. Zhao, C. B., H.-L. Ren, L. C. Song, et al., 2015: Madden–Julian Oscillation simulated in BCC climate models. Dyn. Atmos. Oceans, 72, 88–101.CrossRefGoogle Scholar
  130. Zheng, F., J. Zhu, R.-H. Zhang, et al., 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33, L19604, doi: 10.1029/2006GL026994.CrossRefGoogle Scholar
  131. Zhou, T. J., and L. W. Zou, 2010: Understanding the predictability of East Asian summer monsoon from the reproduction of land–sea thermal contrast change in AMIP-Type simulation. J. Climate, 23, 6009–6026.CrossRefGoogle Scholar
  132. Zhou, W., M. Y. Chen, W. Zhuang, et al., 2016: Evaluation of the tropical variability from the Beijing Climate Center’s realtime operational global ocean data assimilation system. Adv. Atmos. Sci., 33, 208–220, doi: 10.1007/s00376-015-4282-9.CrossRefGoogle Scholar
  133. Zuo, J. Q., W. J. Li, H.-L. Ren, et al., 2012: Change of the relationship between spring NAO and East Asian summer monsoon and its possible mechanism. Chinese J. Geophys., 55, 384–395. (in Chinese)Google Scholar
  134. Zuo, J. Q., W. J. Li, C. H. Sun, et al., 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 1173–1186.CrossRefGoogle Scholar
  135. Zuo, J. Q., H.-L. Ren, and W. L. Li, 2015: Contrasting impacts of the Arctic Oscillation on surface air temperature anomalies in southern China between early and middle-to-late winter. J. Climate, 28, 4015–4026.CrossRefGoogle Scholar
  136. Zuo, J. Q., H.-L. Ren, J. Wu, et al., 2016a: Subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2. Dyn. Atmos. Oceans, 75, 33–45.CrossRefGoogle Scholar
  137. Zuo, J. Q., H.-L. Ren, W. J. Li, et al., 2016b: Interdecadal variations in the relationship between the winter North Atlantic Oscillation and temperature in south–central China. J. Climate, 29, 7477–7493, doi: 10.1175/JCLI-D-15-0873.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hong-Li Ren
    • 1
    • 2
    Email author
  • Fei-Fei Jin
    • 1
    • 3
  • Lianchun Song
    • 1
    • 2
  • Bo Lu
    • 1
    • 2
  • Ben Tian
    • 1
    • 2
  • Jinqing Zuo
    • 1
    • 2
    • 4
  • Ying Liu
    • 1
    • 2
    • 4
  • Jie Wu
    • 1
    • 2
  • Chongbo Zhao
    • 1
    • 2
  • Yu Nie
    • 1
    • 2
  • Peiqun Zhang
    • 1
    • 2
  • Jin Ba
    • 1
    • 2
  • Yujie Wu
    • 1
    • 2
  • Jianghua Wan
    • 1
    • 2
  • Yuping Yan
    • 1
    • 2
  • Fang Zhou
    • 1
    • 2
    • 4
  1. 1.Laboratory for Climate StudiesNational Climate Center, China Meteorological AdministrationBeijingChina
  2. 2.CMA–NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change ResearchSchool of Atmospheric Sciences, Nanjing UniversityNanjingChina
  3. 3.Department of Atmospheric SciencesUniversity of HawaiiHonoluluUSA
  4. 4.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations