Journal of Meteorological Research

, Volume 31, Issue 1, pp 73–81 | Cite as

Interdecadal variations of ENSO around 1999/2000

  • Zeng-Zhen Hu
  • Arun Kumar
  • Bohua Huang
  • Jieshun Zhu
  • Hong-Li Ren


This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the corresponding changes in the characteristics of the El Niño–Southern Oscillation (ENSO). Compared with 1979–1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shortening of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm anomaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradient, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an increase in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible connections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also discussed.

Key words

ENSO interdecadal variation amplitude suppression frequency change mean state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We appreciate the constructive comments and suggestions from the two reviewers. The scientific results and conclusions, as well as any view or opinions expressed herein, are those of the authors and do not necessarily reflect the views of NWS, NOAA, or the Department of Commerce.


  1. An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 2044–2055, doi: 10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.CrossRefGoogle Scholar
  2. Barnston, A. G., M. K. Tippett, M. L. L’Heureux, et al., 2012: Skill of real-time seasonal ENSO model predictions during 2002–2011: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651, doi: 10.1175/BAMS-D-11-00111.1.CrossRefGoogle Scholar
  3. Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symposium on Integrated Observing and assimilation systems for atmosphere, oceans, and land surface, Seattle, WA, 11–15, [Available at].Google Scholar
  4. Bunge, L., and A. J. Clarke, 2014: On the warm water volume and its changing relationship with ENSO. J. Phys. Oceanogr., 44, 1372–1385, doi: 10.1175/JPO-D-13-062.1.CrossRefGoogle Scholar
  5. Cai, W. J., S. Borlace, M. Lengaigne, et al., 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111–116, doi: 10.1038/nclimate2100.CrossRefGoogle Scholar
  6. Clarke, A. J., and S. Van Gorder, 2001: ENSO prediction using an ENSO trigger and a proxy for western equatorial Pacific warm pool movement. Geophys. Res. Lett., 28, 579–582, doi: 10.1029/2000GL012201.CrossRefGoogle Scholar
  7. Collins, M., S.-I. An, W. J. Cai, et al., 2011: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391–397, doi: 10.1038/ngeo868.CrossRefGoogle Scholar
  8. England, M. H., S. McGregor, P. Spence, et al., 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222–227, doi: 10.1038/nclimate2106.CrossRefGoogle Scholar
  9. Graham, R. J., W.-T. Yun, J. Kim, et al., 2011: Long-range forecasting and the Global Framework for Climate Services. Climate Res., 47, 47–55, doi: 10.3354/cr00963.CrossRefGoogle Scholar
  10. Horii, T., I. Ueki, and K. Hanawa, 2012: Breakdown of ENSO predictors in the 2000s. decadal changes of recharge/discharge-SST phase relation and atmospheric intraseasonal forcing. Geophys. Res. Lett., 39, L10707, doi: 10.1029/2012GL 051740.CrossRefGoogle Scholar
  11. Hu, Z.-Z., and T. Nitta, 1996: Wavelet analysis of summer rainfall over North China and India and SOI using 1891–1992 data. J. Meteor. Soc. Japan, 74, 833–844.Google Scholar
  12. Hu, Z.-Z., M. Latif, E. Roeckner, et al., 2000: Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys. Res. Lett., 27, 2681–2684, doi: 10.1029/2000GL011550.CrossRefGoogle Scholar
  13. Hu, Z.-Z., A. Kumar, B. Jha, et al., 2012a: An analysis of warm pool and cold tongue El Niños: Air–sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 2017–2035, doi: 10.1007/s00382-011-1224-9.CrossRefGoogle Scholar
  14. Hu, Z.-Z., A. Kumar, B. Jha, et al., 2012b: An analysis of forced and internal variability in a warmer climate in CCSM3. J. Climate, 25, 2356–2373, doi: 10.1175/JCLI-D-11-00323.1.CrossRefGoogle Scholar
  15. Hu, Z.-Z., A. Kumar, H.-L. Ren, et al., 2013: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 2601–2613, doi: 10.1175/JCLI-D-12-00265.1.CrossRefGoogle Scholar
  16. Hu, Z.-Z., A. Kumar, and B. H. Huang, 2016a: Spatial distribution and the interdecadal change of leading modes of heat budget of the mixed-layer in the tropical Pacific and the association with ENSO. Climate Dyn., 46, 1753–1768, doi: 10.1007/s00382-015-2672-4.CrossRefGoogle Scholar
  17. Hu, Z.-Z., B. H. Huang, Y.-H. Tseng, et al., 2016b: Does vertical temperature gradient of the atmosphere matter for El Niño development? Climate Dyn., (published online), doi: 10.1007/s 00382-016-3149-9.Google Scholar
  18. Huang, B. Y., V. F. Banzon, E. Freeman, et al., 2015: Extended reconstructed sea surface temperature version 4 (ERSST v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911–930, doi: 10.1175/JCLI-D-14-00006.1.Google Scholar
  19. Janowiak, J. E., and P. P. Xie, 1999: CAMS-OPI: A global satellite–rain gauge merged product for real-time precipitation monitoring applications. J. Climate, 12, 3335–3342, doi: 10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2.CrossRefGoogle Scholar
  20. Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.CrossRefGoogle Scholar
  21. Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847, doi: 10.1175/1520-0469(1997)054<0830:AEORPF> 2.0.CO;2.CrossRefGoogle Scholar
  22. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEPDOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  23. Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern Pacific and central Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008JCLI2309.1.CrossRefGoogle Scholar
  24. Kirtman, B., and A. Pirani, 2009: The state of the art of seasonal prediction: Outcomes and recommendations from the first world climate research program workshop on seasonal prediction. Bull. Amer. Meteor. Soc., 90, 455–458, doi: 10.1175/2008BAMS2707.1.CrossRefGoogle Scholar
  25. Kug, J.-S., S.-I. An, F.-F. Jin, et al., 2005: Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys. Res. Lett., 32, L05706, doi: 10.1029/2004GL 021674.CrossRefGoogle Scholar
  26. Kumar, A., and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., 42, 1243–1258, doi: 10.1007/s00382-013-1721-0.CrossRefGoogle Scholar
  27. Kumar, A., M. Y. Chen, Y. Xue, et al., 2015: An analysis of the temporal evolution of ENSO prediction skill in the context of the equatorial Pacific Ocean observing system. Mon. Wea. Rev., 143, 3204–3213, doi: 10.1175/MWR-D-15-0035.1.CrossRefGoogle Scholar
  28. L’Heureux, M. L., S. Lee, and B. Lyon, 2013a: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571–576, doi: 10.1038/nclimate1840.Google Scholar
  29. L’Heureux, M. L., D. C. Collins, and Z.-Z. Hu, 2013b: Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño–Southern Oscillation. Climate Dyn., 40, 1223–1236, doi: 10.1007/s00382-012-1331-2.CrossRefGoogle Scholar
  30. Li, X. C., S.-P. Xie, S. T. Gille, et al., 2016: Atlantic-induced pantropical climate change over the past three decades. Nat. Climate Change, 6, 275–279, doi: 10.1038/nclimate2840.CrossRefGoogle Scholar
  31. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  32. Lübbecke, J. F., and M. J. McPhaden, 2014: Assessing the twentyfirst-century shift in ENSO variability in terms of the Bjerknes stability index. J. Climate, 27, 2577–2587, doi: 10.1175/JCLI-D-13-00438.1.CrossRefGoogle Scholar
  33. Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Nat. Acad. Sci. USA, 109, 18701–18706, doi: 10.1073/pnas.1210239109.CrossRefGoogle Scholar
  34. McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, doi: 10.1029/2012GL051826.CrossRefGoogle Scholar
  35. McPhaden, M. J., 2015: Playing hide and seek with El Niño. Nat. Climate Change, 5, 791–795, doi: 10.1038/nclimate2775.CrossRefGoogle Scholar
  36. McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific ocean. Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275.CrossRefGoogle Scholar
  37. Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 56–60, doi: 10.1038/382056a0.CrossRefGoogle Scholar
  38. Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 3551–3559, doi: 10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.CrossRefGoogle Scholar
  39. Meyers, S. D., B. G. Kelly, and J. J. O'Brien, 1993: An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Mon. Wea. Rev., 121, 2858–2866, doi: 10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2.CrossRefGoogle Scholar
  40. National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, Washington, D.C., USA, 192 pp.Google Scholar
  41. Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.CrossRefGoogle Scholar
  42. Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523, doi: 10.1175/ JCLI-D-12-00601.1.CrossRefGoogle Scholar
  43. Ren, H.-L., F.-F. Jin, M. F. Stuecker, et al., 2013: ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan, 91, 835–842, doi: 10.2151/jmsj. 2013-608.CrossRefGoogle Scholar
  44. Su, J. Z., B. Q. Xiang, B. Wang, et al., 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 9058–9064, doi: 10.1002/2014GL062380.CrossRefGoogle Scholar
  45. Timmermann, A., J. Oberhuber, A. Bacher, et al., 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694–696, doi: 10.1038/19505.CrossRefGoogle Scholar
  46. Tseng, Y.-H., Z.-Z. Hu, R. Q. Ding, et al., 2016: An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Climate Dyn., (published online), doi: 10.1007/s00382-016-3188-2.Google Scholar
  47. Wang, S. W., J. H. Zhu, J. N. Cai, et al., 2003: Irregularities in ENSO variability. Acta Scientiarum Naturalium Universitatis Pekinensis, 39, 125–133, doi: 10.3321/j.issn:0479-8023.2003.z1.016. (in Chinese)Google Scholar
  48. Wang, W. Q., M. Y. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950–969, doi: 10.1175/2010WAF2222345.1.CrossRefGoogle Scholar
  49. Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi: 10.1029/2009GL038710.CrossRefGoogle Scholar
  50. Xiang, B. O., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327–340, doi: 10.1007/s00382-012-1427-8.CrossRefGoogle Scholar
  51. Yeh, S. W., J. S. Kug, B. Dewitte, et al., 2009: El Niño in a changing climate. Nature, 461, 511–514, doi: 10.1038/nature 08316.CrossRefGoogle Scholar
  52. Zhu, J., G. Zhou, R.-H. Zhang, et al., 2011: On the role of oceanic entrainment temperature (Te) in decadal changes of El Niño/Southern Oscillation. Ann. Geophys., 29, 529–540, doi: 10.5194/angeo-29-529-2011.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zeng-Zhen Hu
    • 1
  • Arun Kumar
    • 1
  • Bohua Huang
    • 2
  • Jieshun Zhu
    • 1
  • Hong-Li Ren
    • 3
  1. 1.Climate Prediction CenterNCEP/NWS/NOAA, 5830 University Research CourtCollege ParkUSA
  2. 2.Department of Atmospheric, Oceanic and Earth Sciences and Center for Ocean–Land–Atmosphere StudiesGeorge Mason UniversityFairfaxUSA
  3. 3.Laboratory for Climate Studies & CMA–NJU Joint Laboratory for Climate Prediction Studies, National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations