Journal of Meteorological Research

, Volume 31, Issue 2, pp 448–454 | Cite as

Statistical estimation of high-resolution surface air temperature from MODIS over the Yangtze River Delta, China

  • Yi Shi
  • Zhihong JiangEmail author
  • Liangpeng Dong
  • Suhung Shen
Special Collection in Commemoration of Shaowu Wang


High-resolution surface air temperature data are critical to regional climate modeling in terms of energy balance, urban climate change, and so on. This study demonstrates the feasibility of using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) to estimate air temperature at a high resolution over the Yangtze River Delta region, China. It is found that daytime LST is highly correlated with maximum air temperature, and the linear regression coefficients vary with the type of land surface. The air temperature at a resolution of 1 km is estimated from the MODIS LST with linear regression models. The estimated air temperature shows a clear spatial structure of urban heat islands. Spatial patterns of LST and air temperature differences are detected, indicating maximum differences over urban and forest regions during summer. Validations are performed with independent data samples, demonstrating that the mean absolute error of the estimated air temperature is approximately 2.5°C, and the uncertainty is about 3.1°C, if using all valid LST data. The error is reduced by 0.4°C (15%) if using best-quality LST with errors of less than 1 K. The estimated high-resolution air temperature data have great potential to be used in validating high-resolution climate models and other regional applications.

Key words

remote sensing surface air temperature land surface temperature land cover type Moderate Resolution Imaging Spectroradiometer (MODIS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the Monsoon Asia Integrated Regional Study (MAIRS) project and Giovanni system at NASA GES DISC (Goddard Earth Sciences Data and Information Servies Center) for their data exploration of MODIS high resolution land surface temperatures and other land products.


  1. Colombi, A., C. De Michele, M. Pepe, et al., 2007: Estimation of daily mean air temperature from MODIS LST in Alpine areas. EARSeL eProceedings, 6, 38–46.Google Scholar
  2. Connor, S. J., M. C. Thomson, S. P. Flasse, et al., 1998: Environmental information systems in malaria risk mapping and epidemic forecasting. Disasters, 22, 39–56, doi: 10.1111/1467-7717.00074.CrossRefGoogle Scholar
  3. Cresswell, M. P., A. P. Morse, M. C. Thomson, et al., 1999: Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model. Int. J. Remote Sens., 20, 1125–1132, doi: 10.1080/0143 11699212885.CrossRefGoogle Scholar
  4. Czajkowski, K. P., S. N. Goward, S. J. Stadler, et al., 2000: Thermal remote sensing of near surface environmental variables: Application over the Oklahoma mesonet. The Professional Geographer, 52, 345–357, doi: 10.1111/0033-0124. 00230.CrossRefGoogle Scholar
  5. Foley, J. A., R. De Fries, G. P. Asner, et al., 2005: Global consequences of land use. Science, 309, 570–574, doi: 10.1126/science.1111772.CrossRefGoogle Scholar
  6. Han, X. Z., S. M. Li, and F. L. Dou, 2012: Study of obtaining high resolution near-surface atmosphere temperature by using the land surface temperature from meteorological satellite data. Acta Meteor. Sinica, 70, 1107–1118, doi: 10.11676/qxxb 2012.093. (in Chinese)Google Scholar
  7. Kusaka, H., F. Chen, M. Tewari, et al., 2012: Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteor. Soc. Japan, 90B, 33–45, doi: 10.2151/jmsj.2012-B03.CrossRefGoogle Scholar
  8. Li, J., and A. D. Heap, 2008: A review of spatial interpolation methods for environmental scientists. Record-Geoscience Australia, 23, 137.Google Scholar
  9. Mostovoy, G. V., R. L. King, K. R. Reddy, et al., 2006: Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GISci. Remote Sens., 43, 78–110, doi: 10.2747/1548-1603.43.1.78.CrossRefGoogle Scholar
  10. Pan, X. D., and X. Li, 2011: Validation of WRF model on simulating forcing data for Heihe River basin. Sciences in Cold and Arid Regions, 3, 344–357, doi: 10.3724/SP.J.1226.2011.00344.Google Scholar
  11. Prihodko, L., and S. N. Goward, 1997: Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ., 60, 335–346, doi: 10.1016/S0034-4257(96)00216-7.CrossRefGoogle Scholar
  12. Qi, S. H., C. F. Luo, C. Y. Wang, et al., 2006: Pre-study on reverse air temperature from remote sensing: Relationship between vegetation index, land surface temperature and air temperature. Remote Sens. Tech. Appl., 21, 130–136, doi: 10.11873/j.issn.1004-0323.2006.2.130. (in Chinese)Google Scholar
  13. Shen, S. H., and G. G. Leptoukh, 2011: Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ. Res. Lett., 6, 045206, doi: 10.1088/1748-9326/6/4/045206.CrossRefGoogle Scholar
  14. Strahler, A., D. Muchoney, J. Borak, et al., 1999: MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD), Version 5.0. Center for Remote Sensing, Department of Geography, Boston University, Boston, MA, USA. Available online at pdf, accessed on March 10, 2017, 72 pp.Google Scholar
  15. Wan, Z. M., 1999: MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD). Institute for Computational Earth System Science, Santa Barbara, CA, USA. 75 pp.Google Scholar
  16. Wan, Z. M., 2006: MODIS Land Surface Temperature Products Users’ Guide. Institute for Computational Earth System Science, University of California, Santa Barbara, CA, USA Available online at, accessed on March 10, 2017, 30 pp.Google Scholar
  17. Wan, Z. M., and Z.-L. Li, 2008: Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens., 29, 5373–5395, doi: 10.1080/01431160802036565.CrossRefGoogle Scholar
  18. Wan, Z. M., Y. L. Zhang, Q. C. Zhang, et al., 2004: Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens., 25, 264–274, doi: 10.1080/0143116031000116417.Google Scholar
  19. Xu, W. H., Q. X. Li, X. L. Wang, et al., 2013: Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res., 118, 9708–9720, doi: 10.1002/jgrd.50791.Google Scholar
  20. Xu, W. Y., R. Sun, Z. F. Jin, et al., 2015: Estimation of near surface air temperature based on MODIS data. Meteor. Environ. Sci., 38, 1–6, doi: 10.16765/j.cnki.1673-7148.2015.01.001. (in Chinese)Google Scholar
  21. Zhang, W., Y. Huang, Y. Q. Yu, et al, 2011: Empirical models for estimating daily maximum, minimum, and mean air temperatures with MODIS land surface temperatures. Int. J. Remote Sens., 32, 9415–9440, doi: 10.1080/01431161.2011.560622.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yi Shi
    • 1
  • Zhihong Jiang
    • 2
    Email author
  • Liangpeng Dong
    • 1
    • 3
  • Suhung Shen
    • 4
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science &TechnologyNanjingChina
  2. 2.Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science &TechnologyNanjingChina
  3. 3.Wuhan Central Meteorological ObservatoryWuhanChina
  4. 4.George Mason UniversityFairfaxUSA

Personalised recommendations