Journal of Meteorological Research

, Volume 31, Issue 5, pp 916–930 | Cite as

Improving CLM4.5 simulations of land–atmosphere exchange during freeze–thaw processes on the Tibetan Plateau

  • Siqiong Luo
  • Xuewei Fang
  • Shihua Lyu
  • Yu Zhang
  • Boli Chen
Regular Article


Soil is heterogeneous and has different thermal and hydraulic properties, causing varied behavior in heat and moisture transport. Therefore, soil has an important effect on land–atmosphere interactions. In this study, an improved soil parameterization scheme that considers gravel and organic matter in the soil was introduced into CLM4.5 (Community Land Model). By using data from the Zoige and Madoi sites on the Tibetan Plateau, the ability of the model to simultaneously simulate the duration of freeze–thaw periods, soil temperature, soil moisture, and surface energy during freeze–thaw processes, was validated. The results indicated that: (1) the new parameterization performed better in simulating the duration of the frozen, thawing, unfrozen, and freezing periods; (2) with the new scheme, the soil thermal conductivity values were decreased; (3) the new parameterization improved soil temperature simulation and effectively decreased cold biases; (4) the new parameterization scheme effectively decreased the dry biases of soil liquid water content during the freezing, completely frozen, and thawing periods, but increased the wet biases during the completely thawed period; and (5) the net radiation, latent heat flux, and soil surface heat flux of the Zoige and Madoi sites were much improved by the new organic matter and thermal conductivity parameterization.

Key words

land surface model freeze–thaw processes gravel and organic matter Tibetan Plateau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beringer, J., A. H. Lynch, F. S. Chapin III, et al., 2001: The representation of arctic soils in the land surface model: The importance of mosses. J. Climate, 14, 3324–3335, doi: 10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2.CrossRefGoogle Scholar
  2. Bonan, G. B., 1996: A Land Surface Model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide. NCAR Technical Note NCAR/TN-417+STR, doi: 10.5065/D6DF6P5X.Google Scholar
  3. Bonan, G. B., P. J. Lawrence, K. W. Oleson, et al., 2011: Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from fluxnet data. J. Geophys. Res., 116, doi: 10.1029/2010JG001593.Google Scholar
  4. Côté, J., and J. M. Konrad, 2005a: Thermal conductivity of basecourse materials. Canad. Geotech. J., 42, 61–78, doi: 10.1139/t04-081.CrossRefGoogle Scholar
  5. Côté, J., and J. M. Konrad, 2005b: A generalized thermal conductivity model for soils and construction materials. Canad. Geotech. J., 42, 443–458, doi: 10.1139/t04-106.CrossRefGoogle Scholar
  6. Chen, B. L., S. H. Lü, and S. Q. Luo, 2012: Simulation analysis on land surface process at maqu station in the Qinghai–Xizang Plateau using community land model. Plateau Meteor., 31, 1511–1522. (in Chinese)Google Scholar
  7. Chen, B. L., S. Q. Luo, S. H. Lü, et al., 2014a: Effects of the soil freeze–thaw process on the regional climate of the Qinghai–Tibet Plateau. Climate Res., 59, 243–257, doi: 10.3354/cr01217.CrossRefGoogle Scholar
  8. Chen, B. L., S. Q. Luo, S. H. Lü, et al., 2014b: Validation and comparison of the simulation at Zoigê station during freezing and thawing with land surface model CLM. Climatic Environ. Res., 19, 649–658, doi: 10.3878/j.issn.1006-9585.2014.13013. (in Chinese)Google Scholar
  9. Chen, B. L., S. Q. Luo, S. H. Lü, et al., 2014c: Simulation and improvement of soil temperature and moisture at zoige station in source region of the Yellow River during freezing and thawing. Plateau Meteor., 33, 337–345. (in Chinese)Google Scholar
  10. Chen, Y. Y., K. Yang, W. J. Tang, et al., 2012: Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for eastern Tibet grasslands. Sci. China Earth Sci., 55, 1001–1011, doi: 10.1007/s11430-012-4433-0.CrossRefGoogle Scholar
  11. Fang, X. W., S. Q. Luo, S. H. Lyu, et al., 2016: A simulation and validation of CLM during freeze–thaw on the Tibetan Plateau. Adv. Meteor., 2016, 9476098, doi: 10.1155/2016/9476098.CrossRefGoogle Scholar
  12. Farouki, O. T., 1981: The thermal properties of soils in cold regions. Cold Regions Sci. Technol., 5, 67–75, doi: 10.1016/0165-232X(81)90041-0.CrossRefGoogle Scholar
  13. Farouki, O. T., 1986: Thermal Properties of Soils. Series on Rock and Soil Mechanics, Trans. Tech. Publ., Clausthal-Zellerfeld, Germany, Vol. 11, 12–28.Google Scholar
  14. Gao, Y. H., K. Li, F. Chen, et al., 2015: Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res., 120, 9258–9278, doi: 10.1002/2015JD023404.Google Scholar
  15. Gao, Z. Q., 2005: Determination of soil heat flux in a Tibetan short-grass prairie. Bound.-Layer Meteor., 114, 165–178, doi: 10.1007/s10546-004-8661-5.CrossRefGoogle Scholar
  16. Gao, Z. Q., X. G. Fan, and L. G. Bian, 2003: An analytical solution to one-dimensional thermal conduction-convection in soil. Soil Science, 168, 99–107, doi: 10.1097/00010694-200302000-00004.CrossRefGoogle Scholar
  17. Gao, Z. Q., N. Chae, J. Kim, et al., 2004: Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the simple biosphere model 2 (SiB2). J. Geophys. Res., 109, doi: 10.1029/2003JD004089.Google Scholar
  18. Guo, D. L., M. X. Yang, and H. J. Wang, 2011a: Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environ. Earth Sci., 63, 97–107, doi: 10.1007/s12665-010-0672-6.CrossRefGoogle Scholar
  19. Guo, D. L., M. X. Yang, and H. J. Wang, 2011b: Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrol. Processes, 25, 2531–2541, doi: 10.1002/hyp.8025.CrossRefGoogle Scholar
  20. Jin, H. J., R. X. He, G. D. Cheng, et al., 2009: Changes in frozen ground in the source area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts. Environ. Res. Lett., 4, 045206, doi: 10.1088/1748-9326/4/4/045206.CrossRefGoogle Scholar
  21. Johansen, O., 1975: Thermal conductivity of soils. Ph. D. dissertation, O US Army Cold Regions Research and Engineering Lab, Trondheim, Norway, 236 pp.Google Scholar
  22. Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, 145–160, doi: 10.1007/s00382-007-0278-1.CrossRefGoogle Scholar
  23. Lawrence, D. M., A. G. Slater, V. E. Romanovsky, et al., 2008: Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res., 113, doi: 10.1029/2007JF000883.Google Scholar
  24. Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Sys., 3, doi: 10.1029/2011MS00045.Google Scholar
  25. Letts, M. G., N. T. Roulet, N. T. Comer, et al., 2000: Parametrization of peatland hydraulic properties for the Canadian land surface scheme. Atmos.–Ocean, 38, 141–160, doi: 10.1080/07055900.2000.9649643.CrossRefGoogle Scholar
  26. Li, Z. G., S. H. Lyu, Y. H. Ao, et al., 2015: Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmos. Res., 155, 13–25, doi: 10.1016/j.atmosres.2014.11.019.CrossRefGoogle Scholar
  27. Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 1729–1742, doi: 10.1002/(ISSN)1097-0088.CrossRefGoogle Scholar
  28. Luo, S. Q., S. H. Lü, Y. Zhang, et al., 2008: Simulation analysis on land surface process of BJ site of central Tibetan Plateau using colm. Plateau Meteor., 27, 259–271. (in Chinese)Google Scholar
  29. Luo, S. Q., S. H. Lü, and Y. Zhang, 2009a: Development and validation of the frozen soil parameterization scheme in common land model. Cold Regions Sci. Technol., 55, 130–140, doi: 10.1016/j.coldregions.2008.07.009.CrossRefGoogle Scholar
  30. Luo, S. Q., S. H. Lü, Y. Zhang, et al., 2009b: Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau. Chinese J. Geophy., 52, 919–928. (in Chinese)CrossRefGoogle Scholar
  31. Luo, S. Q., X. W. Fang, S. H. Lyu, et al., 2016: Frozen ground temperature trends associated with climate change in the Tibetan Plateau three river source region from 1980 to 2014. Climate Res., 67, 241–255, doi: 10.3354/cr01371.CrossRefGoogle Scholar
  32. Luo, S. Q., X. W. Fang, S. H. Lyu, et al., 2017: Interdecadal changes in the freeze depth and period of frozen soil on the Three Rivers Source Region in China from 1960 to 2014. Adv. Meteor., 2017, 5931467, doi: 10.1155/2017/5931467.Google Scholar
  33. Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2010: Technical Description of Version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, doi: 10.5065/D6FB50WZ.Google Scholar
  34. Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2013: Technical Description of Version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503+STR, 420 pp, doi: 10.5065/D6RR1W7M.Google Scholar
  35. Peter-Lidard, C. D., E. Blackrurn, X. Liang, et al., 1998: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55, 1209–1224, doi: 10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2.CrossRefGoogle Scholar
  36. Shang, L. Y., Y. Zhang, S. H. Lü, et al., 2015: Energy exchange of an alpine grassland on the eastern Qinghai–Tibetan Plateau. Sci. Bull., 60, 435–446, doi: 10.1007/s11434-014-0685-8.CrossRefGoogle Scholar
  37. Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Sys., 4, 2001, doi: 10.1029/2011MS000072.CrossRefGoogle Scholar
  38. Sun, S. F., 2005: Physical, Biochemical Mechanism and Parametric Model of Land Surface Processes. China Meteorological Press, Beijing, 84 pp. (in Chinese)Google Scholar
  39. Swenson, S. C., and D. M. Lawrence, 2012: A new fractional snow-covered area parameterization for the community land model and its effect on the surface energy balance. J. Geophys. Res., 117, D21107, doi: 10.1029/2012JD018178.CrossRefGoogle Scholar
  40. Swenson, S. C., D. M. Lawrence, and H. Lee, 2012: Improved simulation of the terrestrial hydrological cycle in permafrost regions by the community land model. J. Adv. Model. Earth Sys., 4, M8002, doi: 10.1029/2012MS000165.Google Scholar
  41. Wang, C. H., R. Shi, and H. C. Zuo, 2008: Analysis on simulation of characteristic of land surface in western Qinghai–Xizang Plateau during frozen and thawing. Plateau Meteor., 27, 239–248. (in Chinese)Google Scholar
  42. Wang, C., Z. G. Wei, Z. C. Li, et al., 2017: Testing and improving the performance of the Common Land Model: A case study for the Gobi landscape. J. Meteor. Res., 31, 625–632, doi: 10.1007/s13351-017-6080-z.CrossRefGoogle Scholar
  43. Wang, S. Y., Y. Zhang, S. H. Lü, et al., 2016: Biophysical regulation of carbon fluxes over an alpine meadow ecosystem in the eastern Tibetan Plateau. Int. J. Biometeor., 60, 801–812, doi: 10.1007/s00484-015-1074-y.CrossRefGoogle Scholar
  44. Wang, X. J., M. X. Yang, G. J. Pang, et al., 2015: Simulation and improvement of land surface processes in nameqie, central Tibetan Plateau, using the community land model (CLM3.5). Environ. Earth Sci., 73, 7343–7357, doi: 10.1007/s12665-014-3911-4.CrossRefGoogle Scholar
  45. Xiong, J. S., Y. Zhang, S. Y. Wang, et al., 2014: Influence of soil moisture transmission scheme improvement in CLM4.0 on simulation of land surface process in Qinghai–Xizang Plateau. Plateau Meteor., 33, 323–336. (in Chinese)Google Scholar
  46. Xue, X., J. Guo, B. S. Han, et al., 2009: The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau. Geomorphology, 108, 182–190, doi: 10.1016/j.geomorph.2009.01.004.CrossRefGoogle Scholar
  47. Yang, K., T. Koike, H. Ishikawa, et al., 2004: Analysis of the surface energy budget at a site of Game/Tibet using a singlesource model. J. Meteor. Soc. Japan, 82, 131–153, doi: 10.2151/jmsj.82.131.CrossRefGoogle Scholar
  48. Yang, K., Y. Y. Chen, and J. Qin, 2009: Some practical notes on the land surface modeling in the Tibetan Plateau. Hydr. Earth Sys. Sci., 13, 687–701, doi: 10.5194/hess-13-687-2009.CrossRefGoogle Scholar
  49. Yang, M. X., T. D. Yao, X. H. Gou, et al., 2007: Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chinese Sci. Bull., 52, 136–139, doi: 10.1007/s11434-007-0004-8.CrossRefGoogle Scholar
  50. Yi, S. H., M. A. Arain, and M. K. Woo, 2006: Modifications of a land surface scheme for improved simulation of ground freeze–thaw in northern environments. Geophys. Res. Lett., 33, L13501, doi: 10.1029/2006GL026340.CrossRefGoogle Scholar
  51. Yi, S., N. Li, B. Xiang, et al., 2013: Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai–Tibetan Plateau. J. Geophys. Res., 118, 1186–1199, doi: 10.1002/jgrg.20093.CrossRefGoogle Scholar
  52. Yi, S., K. Wischnewski, M. Langer, et al., 2014: Freeze/thaw processes in complex permafrost landscapes of northern Siberia simulated using the tem ecosystem model: Impact of thermokarst ponds and lakes. Geosci. Model Dev., 7, 1671–1689, doi: 10.5194/gmd-7-1671-2014.CrossRefGoogle Scholar
  53. Zheng, D. H., R. van der Velde, Z. B. Su, et al., 2015: Augmentations to the noah model physics for application to the yellow river source area. Part I: Soil water flow. J. Hydrometeor., 16, 2659–2676, doi: 10.1175/JHM-D-14-0198.1.CrossRefGoogle Scholar
  54. Zheng, J. Y., Y. H. Yin, and B. Y. Li, 2010: A new scheme for climate regionalization in China. Acta Geogr. Sinica, 65, 3–12. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Siqiong Luo
    • 1
  • Xuewei Fang
    • 1
    • 2
  • Shihua Lyu
    • 2
    • 3
  • Yu Zhang
    • 2
  • Boli Chen
    • 4
  1. 1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.School of Atmospheric Sciences, Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceChengdu University of Information TechnologyChengduChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science &TechnologyNanjingChina
  4. 4.Changzhou Meteorological BureauChangzhouChina

Personalised recommendations