Advertisement

Journal of Meteorological Research

, Volume 31, Issue 1, pp 171–186 | Cite as

Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer

  • Senfeng Liu
  • Anmin DuanEmail author
Article

Abstract

The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific–Japan or East Asia–Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.

Key words

East Asia sub-seasonal evolution Indian Ocean basin mode Indian Ocean dipole mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to Jun Hu for his assistance in using the AGCM.

References

  1. Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology 41, 147–1167d,oi: 10.1175/1525-7541(2003)004<1147: TVGPCP>2.0.CO;2.Google Scholar
  2. Chowdary, J. S., S.-P. Xie, J.-J. Luo, et al., 2011: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607–621, doi: 10.1007/s00382-009-0686-5.CrossRefGoogle Scholar
  3. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.CrossRefGoogle Scholar
  4. Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Clima,te 18, 3483–3505, doi: 10.1175/JCLI3473.1.CrossRefGoogle Scholar
  5. Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, doi: 10.1007/s00703-005-0125-z.CrossRefGoogle Scholar
  6. Du, Y., S. P. Xie, G. Huang, et al., 2009: Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J. Climate, 22, 2023–2038, doi: 10.1175/ 2008JCLI2590.1.CrossRefGoogle Scholar
  7. Duan, A. M., M. R. Wang, Y. H. Lei, et al., 2013: Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J. Climate, 26, 261–275, doi: 10.1175/JCLI-D-11-00669.1.CrossRefGoogle Scholar
  8. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.CrossRefGoogle Scholar
  9. Guan, Z. Y., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, doi: 10.1029/2002GL016831.CrossRefGoogle Scholar
  10. Guan, Z. Y., K. Ashok, and T. Yamagata, 2003: Summertime response of the tropical atmosphere to the Indian Ocean dipole sea surface temperature anomalies. J. Meteor. Soc. Japan, 81, 531–561.CrossRefGoogle Scholar
  11. He, C., T. J. Zhou, and B. Wu, 2015: The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms. J. Meteor. Res., 29, 562–575, doi: 10.1007/s13351-015-5037-3.CrossRefGoogle Scholar
  12. Hu, J., and A. M. Duan, 2015: Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon. Climate Dyn., 45, 2697–2711, doi: 10.1007/s00382-015-2503-7.CrossRefGoogle Scholar
  13. Huang, G., K. M. Hu, and S. P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the mid-1970s: An atmospheric GCM Study. J. Climate, 23, 5294–5304.CrossRefGoogle Scholar
  14. Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243–256.Google Scholar
  15. Kim, J.-E., S.-W. Yeh, and S.-Y. Hong, 2009: Two types of strong Northeast Asian summer monsoon. J. Clima,te 22, 4406–4417, doi: 10.1175/2009JCLI2434.1.CrossRefGoogle Scholar
  16. Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.CrossRefGoogle Scholar
  17. Kosaka, Y., S. P. Xie, N.C. Lau, et al., 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. U. S. A., 110, 7574–7579, doi: 10.1073/pnas.1215582110.CrossRefGoogle Scholar
  18. Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 2461–2482, doi: 10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.CrossRefGoogle Scholar
  19. Li, C. Y., and M. Q. Mu, 2001: The influence of the Indian Ocean dipole on atmospheric circulation and climate. Adv. Atmos. Sci., 18, 831–843. (in Chinese)Google Scholar
  20. Li, S. L., J. Lu, G. Huang, et al., 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088, doi: 10.1175/ 2008JCLI2433.1.CrossRefGoogle Scholar
  21. Li, T., Y. S. Zhang, C.-P. Chang, et al., 2001: On the relationship between Indian Ocean sea surface temperature and Asian summer monsoon. Geophys. Res. Lett., 28, 2843–2846, doi: 10.1029/2000GL011847.CrossRefGoogle Scholar
  22. Liu, Y. M., G. X. Wu, and R. C. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17, 682–698, doi: 10.1175/1520-0442(2004)017<0682:RBTSAA> 2.0.CO;2.CrossRefGoogle Scholar
  23. Lu, R. Y., and S. Lu, 2015: Asymmetric relationship between Indian Ocean SST and the western North Pacific summer monsoon. J. Climate, 28, 1383–1395, doi: 10.1175/JCLI-D-14-00289.1.CrossRefGoogle Scholar
  24. Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43.Google Scholar
  25. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390.Google Scholar
  26. Qu, X., and G. Huang, 2012: Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. Int. J. Climatol., 32, 2073–2080, doi: 10.1002/joc.2378.CrossRefGoogle Scholar
  27. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  28. Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Research, 25, 151–169, doi: 10.3354/cr025151.CrossRefGoogle Scholar
  29. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363, doi: 10.1038/43855.Google Scholar
  30. Terao, T., and T. Kubota, 2005: East–west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon. Geophys. Res. Lett,. 32, L15706, doi: 10.1029/2005GL023010.CrossRefGoogle Scholar
  31. Wang, B., R. G. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 4073–4090, doi: 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.CrossRefGoogle Scholar
  32. Wang, B., Z. W. Wu, J. P. Li, et al., 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449–4463, doi: 10.1175/2008JCLI2183.1.CrossRefGoogle Scholar
  33. Webster, P. J., A. M. Moore, J. P. Loschnigg, et al., 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360, doi: 10.1038/43848.CrossRefGoogle Scholar
  34. Wu, B., T. Li, and T. J. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 2974–2986, doi: 10.1175/2010JCLI3300.1.CrossRefGoogle Scholar
  35. Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 2992–3005, doi: 10.1175/2008JCLI2710.1.CrossRefGoogle Scholar
  36. Wu, G. X., and H. Z. Liu, 1995: Neighborhood response of rainfall to tropical sea surface temperature anomalies. Part I: Numerical experiment. Chinese J. Atmos. Sci., 19, 422–434. (in Chinese)Google Scholar
  37. Wu, G. X., P. Liu, Y. M. Liu, et al., 2000: Impacts of the sea surface temperature anomaly in the Indian ocean on the subtropical anticyclone over the western pacific—Two-stage thermal adaptation in the atmosphere. Acta Meteor. Sinica, 58, 513–522. (in Chinese)Google Scholar
  38. Wu, G. X., Y. M. Liu, B. He, et al., 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 204, doi: 10.1038/srep00404.Google Scholar
  39. Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi: 10.1175/2008JCLI2544.1.CrossRefGoogle Scholar
  40. Xie, S. P., Y. Kosaka, Y. Du, et al., 2016: Indo–western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432, doi: 10.1007/s00376-015-5192-6.CrossRefGoogle Scholar
  41. Yang, J. L., and Q. Y. Liu, 2008: The “charge/discharge” roles of the basin-wide mode of the Indian Ocean SST anomaly-influence on the South Asian high in summer. Acta Oceanologica Sinica, 30, 12–19. (in Chinese)Google Scholar
  42. Yang, J. L., Q. Y. Liu, S. P. Xie, et al., 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi: 10.1029/2006GL028571.Google Scholar
  43. Yang, J. L., Q. Y. Liu, Z. Y. Liu, et al., 2009: Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys. Res. Lett,. 36, L19705, doi: 10.1029/2009GL039559.CrossRefGoogle Scholar
  44. Yang, J. L., Q. Y. Liu, and Z. Y. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 5889–5902, doi: 10.1175/2010JCLI2962.1.CrossRefGoogle Scholar
  45. Yang, Y., S.-P. Xie, L. X. Wu, et al., 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 8021–8036, doi: 10.1175/JCLI-D-15-0078.1.CrossRefGoogle Scholar
  46. Yatagai, A., O. Arakawa, K. Kamiguchi, et al., 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA, 5, 137–140, doi: 10.2151/sola.2009-035.CrossRefGoogle Scholar
  47. Yu, H. Y., Q. Bao, L. J. Zhou, et al., 2014: Sensitivity of precipitation in aqua-planet experiments with an AGCM. Atmos. Oceanic Sci. Lett., 7, 1–6, doi: 10.3878/j.issn.1674-2834.13.0033.CrossRefGoogle Scholar
  48. Yuan, Y., H. Yang, W. Zhou, et al., 2008: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 1849–1859, doi: 10.1002/joc.1678.CrossRefGoogle Scholar
  49. Zhou, L. J., Y. M. Liu, Q. Bao, et al., 2012: Computational performance of the high-resolution atmospheric model FAMIL. Atmos. Oceanic Sci. Lett., 5, 355–359.CrossRefGoogle Scholar
  50. Zhou, L. J., Q. Bao, Y. M. Liu, et al., 2015: Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1–20, doi: 10.1002/2014MS 000349.CrossRefGoogle Scholar
  51. Zhu, Z. W., T. Li, and J. H. He, 2014: Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southern China. J. Climate, 27, 1083–1099, doi: 10.1175/JCLI-D-13-00180.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations