Journal of Meteorological Research

, Volume 31, Issue 1, pp 61–72 | Cite as

Amplification of the solar signal in the summer monsoon rainband in China by synergistic actions of different dynamical responses

Article

Abstract

A rainband meridional shift index (RMSI) is defined and used to statistically prove that the East Asian summer monsoon rainband is usually significantly more northward in the early summer of solar maximum years than that of solar minimum years. By applying continuous wavelet transform, cross wavelet transform, and wavelet coherence, it is found that throughout most of the 20th century, the significant decadal oscillations of sunspot number (SSN) and the RMSI are phase-locked and since the 1960s, the SSN has led the RMSI slightly by approximately 1.4 yr. Wind and Eliassen–Palm (EP) flux analysis shows that the decadal meridional oscillation of the June rainband likely results from both a stronger or earlier onset of the tropical monsoon and poleward shift of the subtropical westerly jet in high-solar months of May and June. The dynamical responses of the lower tropical monsoon and the upper subtropical westerly jet to the 11-yr solar cycle transmit bottom-up and top-down solar signals, respectively, and the synergistic actions between the monsoon and the jet likely amplify the solar signal at the northern boundary of the monsoon to some extent.

Key words

solar cycle rainband East Asian summer monsoon decadal variability EP flux precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions, and to the editors for helping us to improve this paper. We thank the CRU of the University of East Anglia and the GPCC for the precipitation datasets, SILSO for the SSN data, NCEP–NCAR for the wind and temperature data, and ECMWF for the ozone data. We also thank C. Torrence and G. Compo (http://paos.colorado.edu/research/wavelets), and A. Grinsted et al. (http://www.pol.ac.uk/home/ research/waveletcoherence) for wavelet analysis softwares.

References

  1. Bhattacharyya, S., and R. Narasimha, 2007: Regional differentiation in multidecadal connections between Indian monsoon rainfall and solar activity. J. Geophys. Res., 112, D24103, doi: 10.1029/2006JD008353.CrossRefGoogle Scholar
  2. Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi: 10.1002/qj.776.CrossRefGoogle Scholar
  3. Ding, Y. H., Z. Y. Wang, and Y. Sun, 2007: Interdecadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 1139–1161, doi: 10.1002/joc.1615.CrossRefGoogle Scholar
  4. Ding, Y. H., Y. Sun, Z. Y. Wang, et al., 2009: Interdecadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part II: Possible causes. Int. J. Climatol., 29, 1926–1944, doi: 10.1002/joc.1759.Google Scholar
  5. Grinsted, A., J. C. Moore, and S. Jevrejeva, 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophysics, 11, 561–566.CrossRefGoogle Scholar
  6. Haigh, J. D., 1994: The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 370, 544–546.CrossRefGoogle Scholar
  7. Harris, I., P. D. Jones, T. J. Osborn, et al., 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol., 34, 623–642, doi: 10.1002/ joc.3711.CrossRefGoogle Scholar
  8. Herman, J. R., and A. Richard, 2005: Goldberg for National Aeronautics and Space Administration. Sun, Weather and Climate. University Press of the Pacific, Honolulu, Hawaii, 376 pp.Google Scholar
  9. Herschel, W., 1801: Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philosophical Transactions of the Royal Society, London, 91, 265–318.CrossRefGoogle Scholar
  10. Hoyt, D. V., and K. H. Schatten, 1997: The Role of the Sun in Climate Change. Oxford University Press, New York, 279 pp.Google Scholar
  11. Huang, R. H., Y. H. Xu, and L. T. Zhou, 1999: The interdecadal variation of summer precipitations in China and the drought trend in North China. Plateau Meteor., 18, 465–476. (in Chinese)Google Scholar
  12. IPCC, 2013: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G. K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 1535 pp.Google Scholar
  13. Kodera, K., 2004: Solar influence on the Indian Ocean monsoon through dynamical processes. Geophys. Res. Lett,. 31, L24209, doi: 10.1029/2004GL020928.CrossRefGoogle Scholar
  14. Kodera, K., and K. Shibata, 2006: Solar influence on the tropical stratosphere and troposphere in the northern summer. Geophys. Res. Lett., 33, L19704, doi: 10.1029/2006GL026659.CrossRefGoogle Scholar
  15. Lean, J. L., 2010: Cycles and trends in solar irradiance and climate. Wiley Interdisciplinary Reviews: Climate Change, 1, 111–122.Google Scholar
  16. Li, C. Y., H. Y. Weng, X. Q. Gao, et al., 2003: Initial investigation of another possible reason to cause global warming. Chinese J. Atmos. Sci., 27, 789–797. (in Chinese)CrossRefGoogle Scholar
  17. Li, J. P., and Q. C. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett,. 29, 115-1–115-4, doi: 10.1029/2001GL013874.Google Scholar
  18. Liu, Z. F., K. Yoshimura, N. H. Buenning, et al., 2014: Solar cycle modulation of the Pacific–North American teleconnection influence on North American winter climate. Environ. Res. Lett., 9, 024004, doi: 10.1088/1748-9326/9/2/024004.CrossRefGoogle Scholar
  19. Meehl, G. A., J. M. Arblaster, G. Branstator, et al., 2008: A coupled air–sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 2883–2897, doi: 10.1175/2007JCLI1776.1.CrossRefGoogle Scholar
  20. Meehl, G. A., J. M. Arblaster, K. Matthes, et al., 2009: Amplifying the Pacific climate system response to a small 11-yr solar cycle forcing. Science, 325, 1114–1118, doi: 10.1126/science.1172872.CrossRefGoogle Scholar
  21. Poli, P., H. Hersbach, D. Tan, et al., 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA report series no. 14, ECMWF.Google Scholar
  22. Ratnam, M. V., Y. D. Santhi, P. Kishore, et al., 2014: Solar cycle effects on Indian summer monsoon dynamics. Journal of Atmospheric and Solar, 121, 145–156, doi: 10.1016/j.jastp.2014. 06.012.Google Scholar
  23. Rind, D., 2002: The Sun’s role in climate variations. Science, 296, 673–677, doi: 10.1126/science.1069562.CrossRefGoogle Scholar
  24. Schneider, U., A. Becker, P. Finger, et. al., 2015: GPCC full data reanalysis version 7.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. doi: 10.5676/DWD_GPCC/FD_M_V7_050.Google Scholar
  25. Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78.CrossRefGoogle Scholar
  26. Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño–Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 1985–2004.Google Scholar
  27. van Loon, H., and G. A. Meehl, 2012: The Indian summer monsoon during peaks in the 11-yr sunspot cycle. Geophys. Res. Lett., 39, L13701, doi: 10.1029/2012GL051977.Google Scholar
  28. van Loon, H., G. A. Meehl, and J. M. Arblaster, 2004: A decadal solar effect in the tropics in July–August. Journal of Atmospheric and Solar, 66, 1767–1778.Google Scholar
  29. Wang, J. S., and L. Zhao, 2012: Statistical tests for a correlation between decadal variation in June precipitation in China and sunspot number. J. Geophys. Res., 117, D23117, doi: 10.1029/2012JD018074.Google Scholar
  30. Wang, S. W., Q. S. Ge, F. Wang, et al., 2010: Key issues on debating about the global warming. Adv. Earth Sci., 25, 656–665. (in Chinese)Google Scholar
  31. Xiao, Z. N., Q. Zhong, Z. Q. Yin, et al., 2013: Advances in the research of impact of decadal solar cycle on modern climate. Adv. Earth Sci., 28, 1335–1348. (in Chinese)Google Scholar
  32. Xu, Q., and Q. M. Yang, 1993: Response of the intensity of subtropical high in the Northern Hemisphere to solar activity. Adv. Atmos. Sci., 10, 325–334, doi: 10.1007/BF02658138.CrossRefGoogle Scholar
  33. Zhai, P. M., F. M. Ren, and Q. Zhang, 1999: Detection of trends in China’s precipitation extremes. Acta Meteor. Sinica, 57, 208–216. (in Chinese)Google Scholar
  34. Zhai, P. M., X. B. Zhang, and H. Wan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096–1108.CrossRefGoogle Scholar
  35. Zhao, L., and J. S. Wang, 2014: Robust response of the East Asian monsoon rainband to solar variability. J. Climate, 27, 3043–3051.CrossRefGoogle Scholar
  36. Zhao, L., Y. Xu, J. S. Wang, et al., 2011: Progress in studies on the influence of solar activity on climate change during the last 100 years. Adv. Meteor. Sci. Tech., 1, 37–48. (in Chinese)Google Scholar
  37. Zhao, L., J. S. Wang, and H. J. Zhao, 2012: Solar cycle signature in decadal variability of monsoon precipitation in China. J. Meteor. Soc. Japan, 90, 1–9, doi: 10.2151/jmsj.2012-101.CrossRefGoogle Scholar
  38. Zhou, T. J., and X. L. Chen, 2015: Uncertainty in the 2°C warming threshold related to climate sensitivity and climate feedback. J. Meteor. Res., 29, 884–895, doi: 10.1007/s13351-015-5036-4.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Liang Zhao
    • 1
    • 2
  • Jingsong Wang
    • 3
  • Haiwen Liu
    • 4
  • Ziniu Xiao
    • 1
  1. 1.State Key Laboratory of Numerical Modeling for Atmosphere Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.National Climate CenterChina Meteorological AdministrationBeijingChina
  3. 3.China National Center for Space WeatherBeijingChina
  4. 4.Department of Aviation MeteorologyCivil Aviation University of ChinaTianjinChina

Personalised recommendations