Journal of Meteorological Research

, Volume 30, Issue 6, pp 853–866 | Cite as

The role of nonlinear forcing singular vector tendency error in causing the “spring predictability barrier” for ENSO

  • Wansuo Duan (段晚锁)
  • Peng Zhao (赵 鹏)
  • Junya Hu (胡均亚)
  • Hui Xu (徐 辉)
Articles

Abstract

With the Zebiak–Cane model, the present study investigates the role of model errors represented by the nonlinear forcing singular vector (NFSV) in the “spring predictability barrier” (SPB) phenomenon in ENSO prediction. The NFSV-related model errors are found to have the largest negative effect on the uncertainties of El Ni˜no prediction and they can be classified into two types: the first is featured with a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central–western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite to the first type. The first type of error tends to have the worst effects on El Ni˜no growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSVrelated errors exhibits prominent seasonality, with the fastest error growth in spring and/or summer; hence, these errors result in a significant SPB related to El Ni˜no events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate an SPB for El Ni˜no events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Ni˜no events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central–western Pacific, which likely represent those areas sensitive to El Ni˜no predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.

Key words

spring predictability barrier model error optimal perturbation El Ni˜no event 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barkmeijer, J., T. Iversen, and T. N. Palmer, 2003: Forcing singular vectors and other sensitive model structures. Quart. J. Roy. Meteor. Soc., 129, 2401–2423.CrossRefGoogle Scholar
  2. Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10, 1473–1486.CrossRefGoogle Scholar
  3. Blumenthal, M. B., 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4, 766–784.CrossRefGoogle Scholar
  4. Chen, D. K., S. E., Zebiak, A. J. Busalacchi, et al., 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 1699–1702.CrossRefGoogle Scholar
  5. Chen, D. K., M. A. Cane, A. Kaplan, et al., 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736.CrossRefGoogle Scholar
  6. Dommenget, D., and Y. S. Yu, 2016: The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking. Climate Dyn., doi: 10.1007/s00382-016-3034-6.Google Scholar
  7. Dommenget, D., T., Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño–Southern Oscillation. Climate Dyn., 40, 2825–2847.CrossRefGoogle Scholar
  8. Duan Wansuo and Zhang Rui, 2010: Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model. Adv. Atmos. Sci., 27, 1003–1013.CrossRefGoogle Scholar
  9. Duan, W. S., and C. Wei, 2012: The “spring predictability barrier” for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int. J. Climatol., 33, 1280–1292, doi: 10.1002/joc.3513.CrossRefGoogle Scholar
  10. Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasigeostrophic model. Tellus A, 65, 18452.CrossRefGoogle Scholar
  11. Duan, W. S., and P. Zhao, 2015: Revealing the most disturbing tendency error of Zebiak–Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 2351–2367, doi: 10.1007/s00382-014-2369-0.CrossRefGoogle Scholar
  12. Duan, W. S., and J. Y. Hu, 2016: The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: Results from an earth system model. Climate Dyn., 46, 3599–3615, doi: 10.1007/s00382-015-2789-5.CrossRefGoogle Scholar
  13. Duan, W. S., X. C. Liu, K. Y. Zhu, et al., 2009: Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res., 114, C04022, doi: 10.1029/2008JC004925.Google Scholar
  14. Flügel, M., and P. Chang, 1998: Does the predictability of ENSO depend on the seasonal cycle? J. Atmos. Sci., 55, 3230–3243.CrossRefGoogle Scholar
  15. Gebbie, G., and E. Tziperman, 2009: Predictability of SST-modulated westerly wind bursts. J. Climate, 22, 3894–3909.CrossRefGoogle Scholar
  16. Jin, E. K., J. L. Kinter III, B. Wang, et al., 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647–664.CrossRefGoogle Scholar
  17. Kirtman, B. P., J. Shukla, M. Balmaseda, et al., 2002: Current status of ENSO forecast skill: A report to the climate variability and predictability (CLIVAR) Numerical Experimentation Group (NEG). CLIVAR Working Group on seasonal to interannual prediction, 31 pp. (Available online at http://www.cliver.org/publications/wgpreports/wgsip/nin o3/report.html.)Google Scholar
  18. Kleeman, R., 1991: A simple model of the atmospheric response to ENSO sea surface temperature anomalies. J. Atmos. Sci., 48, 3–19.CrossRefGoogle Scholar
  19. Latif, M., D. Anderson, T. Barnett, et al., 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14375–14393.CrossRefGoogle Scholar
  20. Latif, M., T. P. Barnett, M. A. Cane, et al., 1994: A review of ENSO prediction studies. Climate Dyn., 9, 167–179.CrossRefGoogle Scholar
  21. Lau, K. M., and S. Yang, 1996: The Asian monsoon and predictability of the tropical ocean–atmosphere system. Quart. J. Roy. Meteor. Soc., 122, 945–957.Google Scholar
  22. Levine, A. F. Z., and M. J., McPhaden, 2015: The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys. Res. Lett., 42, 5034–5041.CrossRefGoogle Scholar
  23. Liu, Z. Y., 2002: A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15, 1088–1098.CrossRefGoogle Scholar
  24. Lopez, H., and B. P. Kirtman, 2014: WWBs, ENSO predictability, the spring barrier and extreme events. J. Geophys. Res., 19, 10114–10138, doi: 10.1002/2014JD021908.Google Scholar
  25. Luo, J. J., S. Masson, S. K. Behera, et al., 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 84–93.CrossRefGoogle Scholar
  26. Marshall, A. G., O. Alves, and H. H. Hendon, 2009: A coupled GCM analysis of MJO activity at the onset of El Niño. J. Atmos. Sci., 66, 966–983.CrossRefGoogle Scholar
  27. McCreary, J. P. Jr., and D. L. T. Anderson, 1991: An overview of coupled ocean–atmosphere models of El Niño and the Southern Oscillation. J. Geophy. Res., 96, 3125–3150.CrossRefGoogle Scholar
  28. McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, doi: 10.1029/2003GL016 872.CrossRefGoogle Scholar
  29. McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 1740–1745.CrossRefGoogle Scholar
  30. Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 1405–1446.CrossRefGoogle Scholar
  31. Mu Mu, Duan Wansuo, and Wang Jiacheng, 2002: The predictability problems in numerical weather and climate prediction. Adv. Atmos. Sci., 19, 191–204.CrossRefGoogle Scholar
  32. Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493–501.CrossRefGoogle Scholar
  33. Mu, M., H. Xu, and W. S. Duan, 2007a: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak–Cane model. Geophys. Res. Lett., 34, L03709, doi: 10.1029/2006GL-27412.CrossRefGoogle Scholar
  34. Mu, M., W. S. Duan, and B. Wang, 2007b: Seasondependent dynamics of nonlinear optimal error growth and El Niño–Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, doi: 10.1029/2005JD006981.CrossRefGoogle Scholar
  35. Mu, M., Y. S. Yu, H. Xu, et al., 2014: Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions. Theor. Appl. Climatol., 115, 461–469. doi: 10.1007/s00704-013-0909-x.CrossRefGoogle Scholar
  36. Penland, C, and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 1067–1076.CrossRefGoogle Scholar
  37. Roads, J. O., 1987: Predictability in the extended range. J. Atmos. Sci., 44, 3495–3527.CrossRefGoogle Scholar
  38. Samelson, R. M., and E. Tziperman, 2001: Instability of the chaotic ENSO: The growth-phase predictability barrier. J. Atmos. Sci., 58, 3613–3625.CrossRefGoogle Scholar
  39. Stein, K., N. Schneider, A. Timmermann, et al., 2010: Seasonal synchronization of ENSO events in a linear stochastic model. J. Climate, 23, 5629–5643.CrossRefGoogle Scholar
  40. Stuecker, M. F., A. Timmermann, F. F. Jin, et al., 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geoscience, 6, 540–544.CrossRefGoogle Scholar
  41. Stuecker, M. F., F. F. Jin, A. Timmermann, et al., 2015: Combination mode dynamics of the anomalous northwest pacific anticyclone. J. Climate, 28, 1093–1111.CrossRefGoogle Scholar
  42. Syu, H. H., and J. D. Neelin, 2000: ENSO in a hybrid coupled model. Part I: Sensitivity to physical parametrizations. Climate Dyn., 16, 19–34.CrossRefGoogle Scholar
  43. Tang, Y. M., R. Kleeman, and A. M. Moore, 2008: Comparison of information-based measures of forecast uncertainty in ensemble ENSO prediction. J. Climate, 21, 230–247.CrossRefGoogle Scholar
  44. Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 1985–2004.Google Scholar
  45. Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteor. Atmos. Phys., 56, 33–55.CrossRefGoogle Scholar
  46. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.CrossRefGoogle Scholar
  47. Williams, P. D., 2005: Modelling climate change: The role of unresolved processes. Philos. Trans. Roy. Soc. London, 363, 2931–2946.CrossRefGoogle Scholar
  48. Wu, D. H., D. L. T. Anderson, and M. K. Davey, 1993: ENSO variability and external impacts. J. Climate, 6, 1703–1717.CrossRefGoogle Scholar
  49. Xue, Y., M. A. Cane, S. E. Zebiak, et al., 1994: On the prediction of ENSO: A study with a low-order Markov model. Tellus A, 46, 512–528.CrossRefGoogle Scholar
  50. Yu, L. S., R. A. Weller, and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, doi: 10.1029/2002JC001498.CrossRefGoogle Scholar
  51. Yu, Y. S., W. S. Duan, H. Xu, et al., 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak–Cane model. Quart. J. Roy. Meteor. Soc., 135, 2146–2160.CrossRefGoogle Scholar
  52. Yu, Y. S., M. Mu, and W. S. Duan, 2012a: Does model parameter error cause a significant “Spring Predictability Barrier” for El Niño events in the Zebiak–Cane Model? J. Climate, 25, 1263–1277.CrossRefGoogle Scholar
  53. Yu, Y. S., M. Mu, W. S. Duan, et al., 2012b: Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J. Geophys. Res., 117, C06018, doi: 10.1029/2011JC007758.Google Scholar
  54. Zavala-Garay, J., A. M. Moore, and R. Kleeman, 2004: Influence of stochastic forcing on ENSO prediction. J. Geophys. Res., 109, C11007, doi: 10.1029/2004 JC002406.CrossRefGoogle Scholar
  55. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.CrossRefGoogle Scholar
  56. Zhang, R. H., S. E. Zebiak, R. Kleeman, et al., 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30, doi: 10.1029/2003GL018010.Google Scholar
  57. Zheng, F., and J. Zhu., 2010: Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dynamics, 60, 1061–1073.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wansuo Duan (段晚锁)
    • 1
  • Peng Zhao (赵 鹏)
    • 2
  • Junya Hu (胡均亚)
    • 1
    • 3
  • Hui Xu (徐 辉)
    • 1
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.China Meteorological Administration Training CenterBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations