Journal of Meteorological Research

, Volume 30, Issue 3, pp 298–311 | Cite as

What controls early or late onset of tropical North Atlantic hurricane season?

  • Heng Zuo (左恒)
  • Tim Li (李天明)
  • Jia Liu (刘佳)
  • Melinda Peng
Article

Abstract

The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season. The interannual variation of this hurricane onset date is examined for the period 1979-2013. It is found that the onset date has a marked interannual variation. The standard deviation of the interannual variation of the onset day is 17.5 days, with the climatological mean onset happening on July 23.

A diagnosis of tropical cyclone (TC) genesis potential index (GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity (MPI). A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly (SSTA). Besides the SSTA, vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups.

It is found that the anomalous warm (cold) SST over the tropical Atlantic, while uncorrelated with the Niño3 index, persists from the preceding winter to concurrent summer in the early (late) onset group. The net surface heat flux anomaly always tends to damp the SSTA, which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic. The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region. A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.

Key words

onset of a hurricane season genesis potential index TC maximum potential intensity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avila, L. A., and R. J. Pasch, 1995: Atlantic tropical systems of 1993. Mon. Wea. Rev., 123, 887–896.CrossRefGoogle Scholar
  2. Cai Ninghao, Xu Xin, Song Lili, et al., 2014: Dynamic impact of the vertical shear of gradient wind on the tropical cyclone boundary layer wind field. J. Meteor. Res., 28, 127–138.Google Scholar
  3. Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819–4834.CrossRefGoogle Scholar
  4. Chu Huiyun and Wu Rongsheng, 2013: Environmental influences on the intensity change of tropical cyclones in the western North Pacific. J. Meteor. Res., 27, 335–343.Google Scholar
  5. DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088.CrossRefGoogle Scholar
  6. DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233.CrossRefGoogle Scholar
  7. Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steadystate model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976.CrossRefGoogle Scholar
  8. Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152.CrossRefGoogle Scholar
  9. Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.Google Scholar
  10. Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.CrossRefGoogle Scholar
  11. Fu, B., T. Li, M. S. Peng, et al., 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763–780.CrossRefGoogle Scholar
  12. Fu, B., M. S. Peng, T. Li, et al., 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 1067–1080.CrossRefGoogle Scholar
  13. Ge, X. Y., T. Li, and X. Q. Zhou, 2007: Tropical cyclone energy dispersion under vertical shears. Geophys. Res. Lett., 34, L23807, doi: 10.1029/2007GL031867.Google Scholar
  14. Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 1169–1187.CrossRefGoogle Scholar
  15. Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, et al., 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474–479.CrossRefGoogle Scholar
  16. Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans. James Glaisher House, 155–218.Google Scholar
  17. Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649–1668.CrossRefGoogle Scholar
  18. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  19. Klotzbach, P. J., 2011: El Niño–southern oscillation's impact on Atlantic basin hurricanes and U. S. landfalls. J. Climate, 24, 1252–1263.CrossRefGoogle Scholar
  20. Knaff, J. A., S. A. Seseske, M. DeMaria, et al., 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 2503–2510.CrossRefGoogle Scholar
  21. Knapp, K. R., M. C. Kruk, D. H. Levinson, et al., 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376.CrossRefGoogle Scholar
  22. Kossin, J. P., 2008: Is the North Atlantic hurricane season getting longer? Geophys. Res. Lett., 35, L23705.CrossRefGoogle Scholar
  23. Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093–1102.CrossRefGoogle Scholar
  24. Li, T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers, and Control. Oouchi, K., and H. Fudeyasu, Eds. Nova Science Publishers, Inc., 61–94.Google Scholar
  25. Li, Z., W. D. Yu, T. Li, et al., 2013: Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. J. Climate, 26, 1033–1046.CrossRefGoogle Scholar
  26. Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  27. Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.CrossRefGoogle Scholar
  28. Peng, M. S., B. Fu, T. Li, et al., 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 1047–1066.CrossRefGoogle Scholar
  29. Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183–193.CrossRefGoogle Scholar
  30. Reynolds, R. W., T. M. Smith, C. Y. Liu, et al., 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496.CrossRefGoogle Scholar
  31. Shapiro, L. J., 1987: Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Mon. Wea. Rev., 115, 2598–2614.CrossRefGoogle Scholar
  32. Wilson, R. M., 1999: Statistical aspects of major (intense) hurricanes in the Atlantic basin during the past 49 hurricane seasons (1950–1998): Implications for the current season. Geophys. Res. Lett., 26, 2957–2960.CrossRefGoogle Scholar
  33. Wing, A. A., A. H. Sobel, and S. J. Camargo, 2007: Relationship between the potential and actual intensities of tropical cyclones on interannual timescales. Geophys. Res. Lett., 34, L08810.Google Scholar
  34. Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. OAFlux Project Technical Report OA-2008-01, Woods Hole Oceanographic Institution, Massachusetts, 64 pp.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Heng Zuo (左恒)
    • 1
  • Tim Li (李天明)
    • 1
    • 2
  • Jia Liu (刘佳)
    • 1
  • Melinda Peng
    • 3
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  2. 2.International Pacific Research Center and Department of Atmospheric SciencesUniversity of Hawaii at ManoaHonolulu, HawaiiUSA
  3. 3.Naval Research LaboratoryMonterey, CaliforniaUSA

Personalised recommendations