Advertisement

Journal of Meteorological Research

, Volume 30, Issue 3, pp 328–340 | Cite as

Factors controlling the interannual variations of MJO intensity

  • Li Deng (邓莉)
  • Tim Li (李天明)
  • Jia Liu (刘佳)
  • Melinda Peng
Article

Abstract

The interannual variations of intensity of the Madden-Julian Oscillation (MJO) during boreal winter are investigated by using the observed outgoing longwave radiation (OLR) and the reanalysis data of ECMWF and NCEP. The standard deviation of 20-80-day filtered OLR anomaly is used to measure the MJO intensity. The dominant spatial structure of the interannual variability is revealed by an EOF analysis of the MJO intensity field. It is found that the leading mode is associated with eastern Pacific type ENSO, whereas the second mode is related to central Pacific type ENSO. A simple atmospheric model is used to investigate the relative roles of background moisture and wind changes in affecting the overall strength of MJO. The numerical experiments indicate that the background moisture effect is dominant while the background wind change has a minor effect.

Key words

MJO interannual variation ENSO background mean state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergman, J. W., H. H. Hendon, and K M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14, 1702–1719.CrossRefGoogle Scholar
  2. Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 3061–3074.CrossRefGoogle Scholar
  3. Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 4143–4158, doi: 10.1175/JCLI4953.1.CrossRefGoogle Scholar
  4. Dee, D., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.CrossRefGoogle Scholar
  5. Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 2397–2417.CrossRefGoogle Scholar
  6. Fu, B., T. Li, M. S. Peng, et al., 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763–780.CrossRefGoogle Scholar
  7. Ge, X. Y., T. Li, and X. Q. Zhou, 2007: Tropical cyclone energy dispersion under vertical shears. Geophys. Res. Lett., 34, L23807, doi: 10.1029/2007GL031867.Google Scholar
  8. Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50-day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 2909–2923.CrossRefGoogle Scholar
  9. Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 2225–2237.CrossRefGoogle Scholar
  10. Hendon, H. H., C. D. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 2538–2550.CrossRefGoogle Scholar
  11. Hendon, H. H., M. C. Wheeler, and C. D. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531–543.CrossRefGoogle Scholar
  12. Hong, C. C., and T. Li, 2009: The extreme cold anomaly over Southeast Asia in February 2008: Roles of ISO and ENSO. J. Climate, 22, 3786–3801.CrossRefGoogle Scholar
  13. Hsu, P. C., and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942–961.CrossRefGoogle Scholar
  14. Jiang, X. N., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039.CrossRefGoogle Scholar
  15. Jiang, X. N., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 6524–6538.CrossRefGoogle Scholar
  16. Kessler, W. S., 2001: EOF representations of the Madden–Julian oscillation and its connection with ENSO. J. Climate, 14, 3055–3061.CrossRefGoogle Scholar
  17. Lau, W. K. M., and D. E. Waliser, 2011: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer Science and Business Media, 613 pp.Google Scholar
  18. Lengaigne, M., J.-P. Boulanger, C. Menkes, et al., 2003: The March 1997 westerly wind event and the onset of the 1997–98 El Niño: Understanding the role of the atmospheric response. J. Climate, 16, 3330–3343.CrossRefGoogle Scholar
  19. Li Chongyin and Zhou Yaping, 1994: Relationship between intraseasonal oscillation in the tropical atmosphere and ENSO. Acta Geophys. Sinica, 37, 17–26. (in Chinese)Google Scholar
  20. Li Chongyin and I. Smith, 1995: Numerical simulation of the tropical intraseasonal oscillation and the effect of warm SST. Acta Meteor. Sinica, 9, 1–12.Google Scholar
  21. Li Chongyin, Ling Jian, Song Jie, et al., 2014: Research progress in China on the tropical atmospheric intraseasonal oscillation. J. Meteor. Res., 28, 671–692.CrossRefGoogle Scholar
  22. Li, T. M., and B. Wang, 1994: The influence of sea surface temperature on the tropical intraseasonal oscillation: A numerical study. Mon. Wea. Rev., 122, 2349–2362.CrossRefGoogle Scholar
  23. Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variability. Terrestrial, Atmospheric and Oceanic Sciences, 16, 285–314.Google Scholar
  24. Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093–1102, doi: 10.1175/JAS3676.1.CrossRefGoogle Scholar
  25. Li, T., and C. H. Zhou, 2009: Planetary scale selection of the Madden–Julian oscillation. J. Atmos. Sci., 66, 2429–2443, doi: 10.1175/2009JAS2968.1.CrossRefGoogle Scholar
  26. Li, T., M. Kwon, M. Zhao, et al., 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, doi: 10.1029/2010GL045124.Google Scholar
  27. Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.Google Scholar
  28. Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401–412.Google Scholar
  29. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  30. Lin, A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 6304–6320, doi: 10.1175/2008JCLI2331.1.CrossRefGoogle Scholar
  31. Lin, H., G. Brunet, and B. Yu, 2015: Interannual variability of the Madden–Julian oscillation and its impact on the North Atlantic oscillation in the boreal winter. Geophys. Res. Lett., 42, 5571–5576, doi: 10.1002/2015GL064547.CrossRefGoogle Scholar
  32. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708, doi: 10.11 75/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.CrossRefGoogle Scholar
  33. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 1109–1123, doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.CrossRefGoogle Scholar
  34. Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 1451–1460, doi: 10.1175/1520-0442(2000)013<1451:MOENPH>2.0. CO;2.CrossRefGoogle Scholar
  35. Qi, Y. J., R. H. Zhang, T. Li, et al., 2008: Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophys. Res. Lett., 35, L17704, doi: 10.1029/2008GL034517.CrossRefGoogle Scholar
  36. Rong, X. Y., R. H. Zhang, T. Li, et al., 2011: Upscale feedback of high-frequency winds to ENSO. Quart. J. Roy. Meteor. Soc., 137, 894–907.CrossRefGoogle Scholar
  37. Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.CrossRefGoogle Scholar
  38. Sooraj, K. P., D. Kim, J. S. Kug, et al., 2009: Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics. Climate Dyn., 33, 495–507, doi 10.1007/s00382-008-0483-6.CrossRefGoogle Scholar
  39. Teng, H. Y., and B. Wang, 2003: Interannual variations of the boreal summer intraseasonal oscillation in the Asian–Pacific Region. J. Climate, 16, 3572–3584, doi: 10.1175/1520-0442(2003)016<3572:IVOTBS>2.0.CO;2.CrossRefGoogle Scholar
  40. Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065.CrossRefGoogle Scholar
  41. Wang, B., and T. M. Li, 1993: A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260–284.CrossRefGoogle Scholar
  42. Wang, B., and T. M. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 1386–1400, doi: 10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.CrossRefGoogle Scholar
  43. Wang, B., and X. S. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449–467, doi: 1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.CrossRefGoogle Scholar
  44. Wang, B., and X. S. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 72–86.CrossRefGoogle Scholar
  45. Wang, B., R. Wu, and T. Li, 2003: Atmospherewarm ocean interaction and its impact on AsianAustralian monsoon variation. J. Climate, 16, 1195–1211.CrossRefGoogle Scholar
  46. Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Niño decaying summer. J. Climate, 23, 2974–2986.CrossRefGoogle Scholar
  47. Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Li Deng (邓莉)
    • 1
  • Tim Li (李天明)
    • 1
    • 2
  • Jia Liu (刘佳)
    • 1
  • Melinda Peng
    • 3
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  2. 2.International Pacific Research Center and Department of Atmospheric SciencesUniversity of Hawaii at ManoaHonolulu, HawaiiUSA
  3. 3.Naval Research LaboratoryMonterey, CaliforniaUSA

Personalised recommendations